
DataONE Operations Documentation
Release 2.0.1

DataONE

Aug 25, 2023

CONTENTS

1 Contents 3
1.1 Project Resources . 3
1.2 Member Nodes Resources . 26
1.3 Coordinating Nodes . 67
1.4 Development . 81
1.5 DataONE Environments . 86
1.6 Glossary . 87

2 Indices and Tables 93

Index 95

i

ii

DataONE Operations Documentation, Release 2.0.1

Operations documentation for the DataONE project and deployed infrastructure.

CONTENTS 1

https://dataone.org/

DataONE Operations Documentation, Release 2.0.1

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Project Resources

1.1.1 Communications

Real Time

DataONE uses Slack for messaging between project participants. Anyone may join the DataONE Slack organization
by requesting an invite at: https://slack.dataone.org/

Video Conferencing

DatONE uses Zoom for video conferencing within the project and for webinars.

Project participants needing Zoom for project purposes should contact support @ dataone.org.

Discussion Lists

DataONE uses Google Groups for email list management. The DataONE.org Google Groups are managed as a
dataone.org subdomain of nceas.ucsb.edu and includes the following lists:

Address Description
administrator@dataone.org For contacting administrators of the DataONE infrastructure.
community@dataone.org A voluntary participation mailing list for disseminating information to the

community with interest in DataONE.
coredev@dataone.org Internal communications for the DataONE core development team.
mnforum@dataone.org Member Node forum, for discussion related to Member Nodes and dissem-

inating information to DataONE Member Node operators.
developers@dataone.org General development related discussion.
DUGcommittee@dataone.org Private list for the DataONE User Group Committee members.
DUGmembers@dataone.org Open list for the DataONE Users Group.
leaders@dataone.org Private list for members of the DataONE Leadership Team.
team@dataone.org Active project participants.
mn-coordinators@dataone.org Private list for the Member Node coordination team.
operations@dataone.org List for notification to stakeholders of the DataONE infrastructure. Any out-

ages, maintenance, or other perturbations to normal operations should be
posted here.

support@dataone.org For requesting support on any aspect of the DataONE project.
sysadmin@dataone.org Project participants with systems administration responsibilities.

3

https://dataoneorg.slack.com
https://slack.dataone.org/
https://zoom.us/
https://groups.google.com/a/dataone.org/forum/#!forum/administrator
https://groups.google.com/a/dataone.org/forum/#!forum/community
https://groups.google.com/a/dataone.org/forum/#!forum/coredev
https://groups.google.com/a/dataone.org/forum/#!forum/mnforum
https://groups.google.com/a/dataone.org/forum/#!forum/developers
https://groups.google.com/a/dataone.org/forum/#!forum/dugcommittee
https://groups.google.com/a/dataone.org/forum/#!forum/dugmembers
https://groups.google.com/a/dataone.org/forum/#!forum/leaders
https://groups.google.com/a/dataone.org/forum/#!forum/team
https://groups.google.com/a/dataone.org/forum/#!forum/mn-coordinators
https://groups.google.com/a/dataone.org/forum/#!forum/operations
https://groups.google.com/a/dataone.org/forum/#!forum/support
https://groups.google.com/a/dataone.org/forum/#!forum/sysadmin

DataONE Operations Documentation, Release 2.0.1

1.1.2 Documents

DataONE Project Documents are stored in various locations.

Google Drive
https://drive.google.com/

The primary location for project documents in Phase II of the project.

Etherpad
https://epad.dataone.org

Open access collaborative notepad.

Hackmd
https://hpad.dataone.org

More advanced collaborative editor that uses markdown syntax and authentication
through GitHub.

Subversion Repository
https://repository.dataone.
org

A subversion repository that contains technical documentation and source code.

GitHub
https://github.com/
DataONEorg

A collection of Git repositories hosted by GitHub contains some documentation
sources. This resource is limited by the size of content that may be stored.

Redmine
https://redmine.dataone.
org/

The redmine issue tracker can be used to store documents as attachements, or to add
simple documents using the wiki (Markdown syntax).

docs.dataone.org (DEP-
RECATED)
https://docs.dataone.org/

Setup with Phase I of the DataONE project. This is a plone site that is maintenance
challenged. New content should not be added here, and where appropriate, existing
content should be migrated to another location.

Google Drive Notes

DataONE uses the public, generally available version of docs, and as a consequence there are some inconveniences to
be aware of.

Duplicate files appear like some sort of duality paradox.

Managing File Permissions

1.1.3 Issue Tracking

Redmine.dataone.org is the primary issue tracker used by the DatONE project. Some other components used by
DataONE are maintained elsewhere and use different issue trackers, including:

Product Tracker
Infrastructure redmine.dataone.org/projects/d1
Member Nodes redmine.dataone.org/projects/mns
www.dataone.org redmine.dataone.org/projects/d1ops
Metacat projects.ecoinformatics.org/ecoinfo/projects/metacat-5.
MetacatUI github.com/NCEAS/metacatui

4 Chapter 1. Contents

https://drive.google.com/
https://epad.dataone.org
https://hpad.dataone.org
https://repository.dataone.org
https://repository.dataone.org
https://github.com/DataONEorg
https://github.com/DataONEorg
https://redmine.dataone.org/
https://redmine.dataone.org/
https://docs.dataone.org/
https://redmine.datoane.org/
https://redmine.dataone.org/projects/d1
https://redmine.dataone.org/projects/mns
https://redmine.dataone.org/projects/d1ops
https://projects.ecoinformatics.org/ecoinfo/projects/metacat-5
https://github.com/NCEAS/metacatui/issues

DataONE Operations Documentation, Release 2.0.1

Member Node Issue Tracking

Member Node (MN) related issues are tracked in the Member Nodes project in Redmine. Each MN is assigned to a
MNDeployment issue type and tasks associated with the MN are attached to the MNDeployment

Member Nodes transition through several stages during their lifetime (Figure 1).

Plan Develop Test Operate

Upgrade

Deprecate

Redmine.dataone.org

Redmine is currently (2018-01-02) setup on an Ubuntu 16.04 server running at UNM. The installation uses the red-
mine distribution available from the standard Ubuntu apt repositories. Redmine is using a Postgresql database,
converted from the previous MySQL installation using pgloader. Details of the installation can be found at red-
mine.dataone.org/admin/info which provides:

Environment:
Redmine version 3.2.1.stable
Ruby version 2.3.1-p112 (2016-04-26) [x86_64-linux-gnu]
Rails version 4.2.6
Environment production
Database adapter PostgreSQL

SCM:
Subversion 1.9.3
Git 2.7.4
Filesystem

Redmine plugins:
clipboard_image_paste 1.12
plantuml 0.5.1
redmine_checklists 3.1.10
redmine_custom_css 0.1.6
redmine_wiki_extensions 0.7.0
redmine_wiki_lists 0.0.7
scrum 0.18.0

1.1. Project Resources 5

https://redmine.dataone.org/projects/mns
https://pgloader.io/
https://redmine.dataone.org/admin/info
https://redmine.dataone.org/admin/info

DataONE Operations Documentation, Release 2.0.1

Scripting Redmine

REST API reference: http://www.redmine.org/projects/redmine/wiki/Rest_api

User API key: https://redmine.dataone.org/my/account

Given:

KEY="my-api-key-from-redmine"
URL="https://redmine.dataone.org"

List project names and their IDs:

curl -s "${URL}/projects.xml?key=${KEY}&limit=100" | \
xml sel -t -m "//project" -v "id" -o ": " -v "name" -n

43: DUG
12: Infrastructure
18: Animations
34: Java Client
37: Log Reporting
40: MN Dashboard
...

List issue trackers:

curl -s "${URL}/trackers.xml?key=${KEY}" | \
xml sel -t -m "//tracker" -v "id" -o ": " -v "name" -n

4: Story
5: Task
1: Bug
2: Feature
...

List issue statuses:

curl -s "${URL}/issue_statuses.xml?key=${KEY}" | \
xml sel -t -m "//issue_status" -v "id" -o ": " -v "name" -n

1: New
12: Planning
13: Ready
2: In Progress
...

List custom fields:

curl -s "${URL}/custom_fields.xml?key=${KEY}" | \
xml sel -t -m "//custom_field" -v "id" -o ": " -v "name" -n

7: Estimatedhours
10: Impact
14: Remaining time
15: Risk cat

(continues on next page)

6 Chapter 1. Contents

http://www.redmine.org/projects/redmine/wiki/Rest_api
https://redmine.dataone.org/my/account

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

16: Risk prob
...

List issues of tracker id = 9, in project id = 20, with status id = 9 status (MNDeployment tickets in Member Nodes
project that are operational):

curl -s "${URL}/issues.xml?key=${KEY}&limit=100&project_id=20&status_id=9&tracker_id=9"␣
→˓| \
xml sel -t -m "//issue" -v "id" -o ": " -v "custom_fields/custom_field[@name='MN URL']" -
→˓n

7969: http://www.uvm.edu/vmc
7956: http://environmentaldatainitiative.org/
7842: https://researchworkspace.com/intro/
7629: https://arcticdata.io/
...

Upgrade Notes, redmine 2.6 -> 3.2

Note: These notes are not relevant to general use of redmine, but are kept here for future reference.

The old version of redmine, running on Ubuntu 14.04 with MySQL:

Environment:
Redmine version 2.6.1.stable
Ruby version 2.0.0-p598 (2014-11-13) [x86_64-linux]
Rails version 3.2.21
Environment production
Database adapter Mysql2

SCM:
Subversion 1.8.8
Git 1.9.1
Filesystem

Redmine plugins:
redmine_checklists 3.1.5
redmine_questions 0.0.7
redmine_wiki_extensions 0.6.5
redmine_wiki_lists 0.0.3

On Ubuntu 16.04, latest maintained redmine is:

$apt-cache showpkg redmine
Package: redmine
Versions:
3.2.1-2 (/var/lib/apt/lists/us.archive.ubuntu.com_ubuntu_dists_xenial_universe_binary-
→˓amd64_Packages) (/var/lib/apt/lists/us.archive.ubuntu.com_ubuntu_dists_xenial_universe_
→˓binary-i386_Packages)
Description Language:

File: /var/lib/apt/lists/us.archive.ubuntu.com_ubuntu_dists_xenial_
→˓universe_binary-amd64_Packages

(continues on next page)

1.1. Project Resources 7

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

MD5: 3a216a1439e1b07aad3aecd0c613d53b
Description Language: en

File: /var/lib/apt/lists/us.archive.ubuntu.com_ubuntu_dists_xenial_
→˓universe_i18n_Translation-en

MD5: 3a216a1439e1b07aad3aecd0c613d53b

Reverse Depends:
redmine-plugin-custom-css,redmine 2.3.1~
redmine-sqlite,redmine 3.2.1-2
redmine-plugin-recaptcha,redmine 2.0.0
redmine-plugin-pretend,redmine
redmine-plugin-pretend,redmine 2.3.1~
redmine-plugin-local-avatars,redmine
redmine-plugin-local-avatars,redmine 2.3.1~
redmine-plugin-custom-css,redmine
redmine-mysql,redmine 3.2.1-2
redmine-pgsql,redmine 3.2.1-2

Dependencies:
3.2.1-2 - debconf (0 (null)) dbconfig-common (0 (null)) redmine-sqlite (16 (null))␣
→˓redmine-mysql (16 (null)) redmine-pgsql (0 (null)) ruby (16 (null)) ruby-interpreter␣
→˓(0 (null)) ruby-actionpack-action-caching (0 (null)) ruby-actionpack-xml-parser (0␣
→˓(null)) ruby-awesome-nested-set (0 (null)) ruby-bundler (0 (null)) ruby-coderay (2 1.0.
→˓6) ruby-i18n (2 0.6.9-1~) ruby-jquery-rails (2 4.0.5) ruby-mime-types (2 1.25) ruby-
→˓net-ldap (2 0.3.1) ruby-openid (0 (null)) ruby-protected-attributes (0 (null)) ruby-
→˓rack (2 1.4.5~) ruby-rack-openid (0 (null)) ruby-rails (2 2:4.2.5) ruby-rails-
→˓observers (0 (null)) ruby-rbpdf (0 (null)) ruby-redcarpet (0 (null)) ruby-request-
→˓store (0 (null)) ruby-rmagick (0 (null)) ruby-roadie-rails (0 (null)) debconf (18 0.5)␣
→˓debconf-2.0 (0 (null)) redmine-plugin-botsfilter (1 1.02-2) redmine-plugin-recaptcha␣
→˓(1 0.1.0+git20121018) passenger (0 (null)) bzr (0 (null)) cvs (0 (null)) darcs (0␣
→˓(null)) git (0 (null)) mercurial (0 (null)) ruby-fcgi (0 (null)) subversion (0 (null))
Provides:
3.2.1-2 -
Reverse Provides:

Plan:

1. Create new server, ubuntu 16.04

Created at UNM CIT, 8GB RAM, 4 CPU, 1TB disk. VM is d1-redmine5.dataone.org running on 64.106.40.38

2. Update, install mariadb-server, redmine via apt

sudo apt-get install mariadb-server
sudo apt-get install apache2
sudo a2enmod ssl
sudo a2enmod headers
sudo a2ensite default-ssl
sudo apt-get install passenger
sudo apt-get install libapache2-mod-passenger
sudo chown -R www-data:www-data /usr/share/redmine/public/plugin_assets
sudo apt-get install imagemagick
sudo apt-get install libmagickwand-dev
sudo apt-get install ruby-rmagick

(continues on next page)

8 Chapter 1. Contents

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

sudo ufw allow 443

3. Make redmine readonly

4. Copy across attachments, mysql database dump, load database

5. Upgrade the database

6. Check operations

7. Migrate database to Postgresql

8. Verify operation

9. Install plugins

10. Switch DNS, make new redmine the current one

Plugins to install:

• scrum https://redmine.ociotec.com/projects/redmine-plugin-scrum

• redmine_checklists (free version) https://www.redmineup.com/pages/plugins/checklists

• Clipboard_image_paste http://www.redmine.org/plugins/clipboard_image_paste

• redmine_custom_css http://www.redmine.org/plugins/redmine_custom_css

• redmine_wiki_extensions http://www.redmine.org/plugins/redmine_wiki_extensions

• redmine_wiki_lists http://www.redmine.org/plugins/redmine_wiki_lists

Needed to adjust permissions to allow bundler to run without root (running with root really messes things up). Some
help here: https://www.redmineup.com/pages/help/installation/how-to-install-redmine- plugins-from-packages

In /usr/share/redmine:

chmod -R g+w public/plugin_assets
sudo chmod -R g+w public/plugin_assets
sudo chmod -R g+w tmp
chown -R www-data:www-data db
sudo chmod -R g+w www-data db
sudo chmod -R g+w db

cd /usr/share/redmine
bundle install --without development test

Transferred to Postgresql using pgloader:

pgloader mysql://redmine:<<password>>@localhost/redmine_default pgsql:///redmine_default

After the transfer, needed to adjust table etc ownership:

for tbl in `psql -qAt -c "select tablename from pg_tables where schemaname = 'public';"␣
→˓redmine_default` ; do psql -c "alter table \"$tbl\" owner to redmine" redmine_default␣
→˓; done

for tbl in `psql -qAt -c "select sequence_name from information_schema.sequences where␣
→˓sequence_schema = 'public';" redmine_default` ; do psql -c "alter table \"$tbl\"␣
→˓owner to redmine" redmine_default ; done

(continues on next page)

1.1. Project Resources 9

https://redmine.ociotec.com/projects/redmine-plugin-scrum
https://www.redmineup.com/pages/plugins/checklists
http://www.redmine.org/plugins/clipboard_image_paste
http://www.redmine.org/plugins/redmine_custom_css
http://www.redmine.org/plugins/redmine_wiki_extensions
http://www.redmine.org/plugins/redmine_wiki_lists
https://www.redmineup.com/pages/help/installation/how-to-install-redmine

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

for tbl in `psql -qAt -c "select table_name from information_schema.views where table_
→˓schema = 'public';" redmine_default` ; do psql -c "alter table \"$tbl\" owner to␣
→˓redmine" redmine_default ; done

and set defaults for new objects:

alter database redmine_default owner to redmine;
GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA public TO redmine;
GRANT ALL PRIVILEGES ON ALL SEQUENCES IN SCHEMA public TO redmine;
GRANT ALL PRIVILEGES ON ALL FUNCTIONS IN SCHEMA public TO redmine;
alter default privileges grant all on functions to redmine;
alter default privileges grant all on sequences to redmine;
alter default privileges grant all on tables to redmine;

Installed scrum plugin from https://redmine.ociotec.com/projects/redmine-plugin-scrum/wiki:

bundle exec rake redmine:plugins:migrate --trace NAME=scrum RAILS_ENV=production

1.1.4 Metrics

DataONE Contributors

Examine the solr index to determine the number of contributors to content exposed by DataONE. The count provided
here is likely higher than the actual number of contributors because the indexing process only performs minimal pre-
processing of names added to the index. For example, in some cases names appear with both ASCII and Unicode
variants and are treated as separate.

[5]: import requests
import json
import pprint
from datetime import datetime
import dateutil
import nameparser

SOLR_TIME_FORMAT = "%Y-%m-%dT%H:%M:%SZ"

T_NOW = datetime.utcnow()
T_START = datetime(2012,7,1)

provides a map from a solr entry to a more normalized form
contributor_index = {}

[6]: def normalize_name(name):
def strip_str(s):

return s.strip(' :.,;()')

parsed = nameparser.HumanName(name)
initial = strip_str(parsed.middle).upper()
if len(initial) > 1:

initial = initial[0]
(continues on next page)

10 Chapter 1. Contents

https://redmine.ociotec.com/projects/redmine-plugin-scrum/wiki

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

given = strip_str(parsed.first).upper()
if len(given) > 2:

given = given[:3]
return f"{strip_str(parsed.last).upper()}_{given}_{initial}"

def getContributors(t_start=None, t_end=None):
url = "https://cn.dataone.org/cn/v2/query/solr/"
params = {

"q":"*:*",
"facet":"on",
"rows":"0",
"facet.limit":"-1",
"facet.field":"investigator",
"wt":"json",

}
dq = None
if t_start is not None:

st = f"{t_start:{SOLR_TIME_FORMAT}}"
if t_end is None:

dq = f"dateUploaded:[\"{st}\" TO \"{T_NOW}\"]"
else:

dq = f"dateUploaded:[\"{st}\" TO \"{t_end:{SOLR_TIME_FORMAT}}\"]"
else:

et = f"{t_end:{SOLR_TIME_FORMAT}}"
dq = f"dateUploaded:[* TO \"{et}\"]"

if dq is not None:
params["q"] = dq

response = requests.get(url, params=params)
data = json.loads(response.text)
investigators = data["facet_counts"]["facet_fields"]["investigator"]
names = []
counts = []
unames = {}
for i in range(0, len(investigators), 2):

if investigators[i] not in contributor_index:
contributor_index[investigators[i]] = normalize_name(investigators[i])

#print(f"{investigators[i]} : {contributor_index[investigators[i]]}")
n = investigators[i+1]
if n > 0:

names.append(investigators[i])
counts.append(investigators[i+1])
nname = contributor_index[investigators[i]]
unames[nname] = unames.get(nname,0) + n

return names, counts, unames

[7]: c_date = T_START
name_count = []
columns = ["date","contributors","unique"]
print(",".join(columns))
while c_date < T_NOW:

(continues on next page)

1.1. Project Resources 11

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

names, counts, unames = getContributors(t_end = c_date)
entry = (c_date, len(names), len(unames.keys()))
print(f"{entry[0]:%Y-%m-%d},{entry[1]},{entry[2]}")
name_count.append(entry)
c_date = c_date + dateutil.relativedelta.relativedelta(months=+1)

date,contributors,unique
2012-07-01,10676,9304
2012-08-01,11835,10446
2012-09-01,12310,10888
2012-10-01,12722,11270
2012-11-01,13501,12006
2012-12-01,14083,12546
2013-01-01,14532,12952
2013-02-01,15344,13710
2013-03-01,16189,14505
2013-04-01,16865,15129
2013-05-01,17419,15623
2013-06-01,18375,16520
2013-07-01,19018,17130
2013-08-01,19658,17715
2013-09-01,20428,18430
2013-10-01,21421,19322
2013-11-01,22167,20033
2013-12-01,22831,20622
2014-01-01,23401,21162
2014-02-01,24338,21993
2014-03-01,25228,22782
2014-04-01,26032,23532
2014-05-01,26900,24350
2014-06-01,27628,25038
2014-07-01,28565,25882
2014-08-01,29560,26826
2014-09-01,30231,27452
2014-10-01,31694,28824
2014-11-01,32790,29856
2014-12-01,34659,31610
2015-01-01,36014,32878
2015-02-01,37110,33893
2015-03-01,38396,34970
2015-04-01,39941,36428
2015-05-01,41454,37838
2015-06-01,42865,39138
2015-07-01,44358,40544
2015-08-01,45758,41840
2015-09-01,47004,43004
2015-10-01,48472,44357
2015-11-01,49924,45713
2015-12-01,51176,46853
2016-01-01,52655,48188
2016-02-01,54005,49404

(continues on next page)

12 Chapter 1. Contents

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

2016-03-01,55489,50766
2016-04-01,58751,53750
2016-05-01,60908,55241
2016-06-01,62549,56743
2016-07-01,63852,57922
2016-08-01,65059,59017
2016-09-01,66838,60595
2016-10-01,68334,61934
2016-11-01,71910,65104
2016-12-01,73637,66616
2017-01-01,78433,70965
2017-02-01,80177,72473
2017-03-01,81667,73807
2017-04-01,83468,75376
2017-05-01,85766,77424
2017-06-01,87704,79145
2017-07-01,89503,80735
2017-08-01,91252,82258
2017-09-01,117806,107285
2017-10-01,121396,110474
2017-11-01,125236,113861
2017-12-01,128070,116386
2018-01-01,132920,120822
2018-02-01,136090,123675
2018-03-01,138273,125459
2018-04-01,140471,127269
2018-05-01,142387,128921
2018-06-01,144035,130258
2018-07-01,145611,131579
2018-08-01,147540,133097
2018-09-01,149416,134701
2018-10-01,150282,135418
2018-11-01,150371,135449
2018-12-01,150423,135467
2019-01-01,150508,135499
2019-02-01,150588,135547
2019-03-01,150677,135602
2019-04-01,152300,136963
2019-05-01,152433,137040
2019-06-01,152544,137094
2019-07-01,152616,137115
2019-08-01,152703,137160
2019-09-01,152758,137179
2019-10-01,152779,137185
2019-11-01,152819,137192
2019-12-01,152885,137197
2020-01-01,153091,137349
2020-02-01,153178,137364
2020-03-01,153302,137435
2020-04-01,153375,137463
2020-05-01,153434,137483
2020-06-01,153529,137506

(continues on next page)

1.1. Project Resources 13

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

2020-07-01,153803,137607
2020-08-01,153933,137648
2020-09-01,154109,137722
2020-10-01,154181,137745
2020-11-01,154263,137762
2020-12-01,154345,137787
2021-01-01,154518,137865
2021-02-01,155460,138625
2021-03-01,155515,138643
2021-04-01,155579,138665
2021-05-01,155670,138683
2021-06-01,155734,138698
2021-07-01,155833,138727
2021-08-01,155900,138745
2021-09-01,155984,138766
2021-10-01,156064,138790
2021-11-01,156203,138806
2021-12-01,156298,138840
2022-01-01,156408,138885
2022-02-01,156551,138942
2022-03-01,156651,138967
2022-04-01,156725,138976
2022-05-01,156828,139000
2022-06-01,156882,139014
2022-07-01,156960,139042
2022-08-01,157061,139055
2022-09-01,157175,139077
2022-10-01,157256,139099
2022-11-01,157341,139118
2022-12-01,157390,139128
2023-01-01,157493,139171
2023-02-01,157563,139190
2023-03-01,157611,139198
2023-04-01,157667,139209
2023-05-01,157750,139227
2023-06-01,157825,139248
2023-07-01,157893,139262
2023-08-01,157941,139270

[8]: import pandas as pd
import matplotlib.pyplot as plt
data_frame = pd.DataFrame(name_count, columns=columns)
data_frame.set_index('date', inplace=True)

plot = data_frame.plot(figsize=(10,4))
plot.set_xlabel("Date")
plot.grid(True)

14 Chapter 1. Contents

DataONE Operations Documentation, Release 2.0.1

[]:

Listing Member Nodes

The authoritative list of Member Nodes is provided by the /node endpoint of the Coordinating Nodes. This notebook
shows how to retrieve that information using the command lines tools curl and xml starlet.

The response from the /node endpoint is an XML document with multiple node elements, each containing details of
a node. For example:

<node replicate="false" synchronize="false" type="mn" state="up">
<identifier>urn:node:PANGAEA</identifier>
<name>PANGAEA</name>
<description>Data publisher for Earth & Environmental Science</description>
<baseURL>https://pangaea-orc-1.dataone.org/mn</baseURL>
<services>

<service name="MNCore" version="v1" available="true"/>
<service name="MNRead" version="v1" available="true"/>
<service name="MNAuthorization" version="v1" available="true"/>
<service name="MNStorage" version="v1" available="true"/>
<service name="MNReplication" version="v1" available="true"/>
<service name="MNCore" version="v2" available="true"/>
<service name="MNRead" version="v2" available="true"/>
<service name="MNAuthorization" version="v2" available="true"/>
<service name="MNStorage" version="v2" available="true"/>
<service name="MNReplication" version="v2" available="true"/>

</services>
<synchronization>

<schedule hour="*" mday="*" min="11" mon="*" sec="0" wday="?" year="*"/>
<lastHarvested>2018-05-03T03:01:02.868+00:00</lastHarvested>
<lastCompleteHarvest>1900-01-01T00:00:00.000+00:00</lastCompleteHarvest>

</synchronization>
<subject>CN=urn:node:PANGAEA,DC=dataone,DC=org</subject>
<contactSubject>CN=M I A213106,O=Google,C=US,DC=cilogon,DC=org</contactSubject>

(continues on next page)

1.1. Project Resources 15

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

<property key="CN_node_name">PANGAEA Data Publisher for Earth and Environmental␣
→˓Science</property>

<property key="CN_operational_status">operational</property>
<property key="CN_logo_url">https://raw.githubusercontent.com/DataONEorg/member-

→˓node-info/master/production/graphics/web/PANGAEA.png</property>
<property key="CN_date_upcoming">2017-11-14T22:00:00</property>
<property key="CN_info_url">https://www.pangaea.de/</property>
<property key="CN_location_lonlat">8.8506,53.1101</property>
<property key="CN_date_operational">2018-03-20T17:46:00.000Z</property>

</node>

This information can be processed using an XML parser such as python’s ElementTree to retrieve specific values of
interest.

[38]: import requests
import xml.etree.ElementTree as ET
from pprint import pprint

#The /node document endpoint
url = "https://cn.dataone.org/cn/v2/node"

node_document = requests.get(url).text
node_tree = ET.fromstring(node_document)
nodes = []

#Extract the node entry items of interest
for node in node_tree.iter("node"):

node_id = node.find("identifier").text
node_coords = node.find("property[@key='CN_location_lonlat']")
if not node_coords is None:

entry = {"node_id":node_id,
"name":node.find("name").text,
"type":node.get("type"),
"state":node.get("state"),
"status":node.find("property[@key='CN_operational_status']").text
}

node_coords = node_coords.text.split(",")
node_coords = list(map(float, node_coords))
reverse coords since leaflet wants latitude first
entry["location"] = (node_coords[1], node_coords[0])
nodes.append(entry)

Display the node list
for n in nodes:

print(f"{n['node_id']:20} {n['type']:3} {n['state']:4} {n['status']:14} {n['name']:
→˓40}")

urn:node:CNUNM1 cn up operational cn-unm-1
urn:node:CNUCSB1 cn up operational cn-ucsb-1
urn:node:CNORC1 cn up operational cn-orc-1
urn:node:KNB mn up operational KNB Data Repository
urn:node:ESA mn up operational ESA Data Registry

(continues on next page)

16 Chapter 1. Contents

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

urn:node:SANPARKS mn up operational SANParks Data Repository
urn:node:ORNLDAAC mn down operational ORNL DAAC
urn:node:LTER mn up operational U.S. LTER Network
urn:node:CDL mn up operational UC3 Merritt
urn:node:PISCO mn up operational PISCO MN
urn:node:ONEShare mn up operational ONEShare DataONE Member Node
urn:node:mnORC1 mn up replicator DataONE ORC Dedicated Replica Server
urn:node:mnUNM1 mn up replicator DataONE UNM Dedicated Replica Server
urn:node:mnUCSB1 mn up replicator DataONE UCSB Dedicated Replica Server
urn:node:TFRI mn up operational TFRI Data Catalog
urn:node:USANPN mn down contributing USA National Phenology Network
urn:node:SEAD mn up operational SEAD Virtual Archive
urn:node:GOA mn up operational Gulf of Alaska Data Portal
urn:node:KUBI mn down operational University of Kansas - Biodiversity␣
→˓Institute
urn:node:LTER_EUROPE mn up operational LTER Europe Member Node
urn:node:DRYAD mn up operational Dryad Digital Repository
urn:node:CLOEBIRD mn up operational Cornell Lab of Ornithology - eBird
urn:node:EDACGSTORE mn up operational EDAC Gstore Repository
urn:node:IOE mn up operational Montana IoE Data Repository
urn:node:US_MPC mn up operational Minnesota Population Center
urn:node:EDORA mn down operational Environmental Data for the Oak Ridge Area␣
→˓(EDORA)
urn:node:RGD mn down operational Regional and Global biogeochemical dynamics␣
→˓Data (RGD)
urn:node:GLEON mn down contributing GLEON Data Repository
urn:node:IARC mn up operational IARC Data Archive
urn:node:NMEPSCOR mn up operational NM EPSCoR Tier 4 Node
urn:node:TERN mn up operational TERN Australia
urn:node:NKN mn up operational Northwest Knowledge Network
urn:node:USGS_SDC mn up operational USGS Science Data Catalog
urn:node:NRDC mn up operational NRDC DataONE member node
urn:node:NCEI mn up operational NOAA NCEI Oceanographic Data Archive
urn:node:PPBIO mn up operational PPBio
urn:node:NEON mn up operational NEON Member Node
urn:node:TDAR mn up operational The Digital Archaeological Record
urn:node:ARCTIC mn up operational Arctic Data Center
urn:node:BCODMO mn up operational Biological and Chemical Oceanography Data␣
→˓Management Office (BCO-DMO)
urn:node:GRIIDC mn up operational Gulf of Mexico Research Initiative␣
→˓Information and Data Cooperative (GRIIDC)
urn:node:R2R mn up operational Rolling Deck to Repository (R2R)
urn:node:EDI mn up operational Environmental Data Initiative
urn:node:UIC mn up operational A Member Node for University of Illinois at␣
→˓Chicago.
urn:node:RW mn up operational Research Workspace
urn:node:FEMC mn up operational Forest Ecosystem Monitoring Cooperative␣
→˓Member Node
urn:node:OTS_NDC mn up operational Organization for Tropical Studies -␣
→˓Neotropical Data Center
urn:node:PANGAEA mn up operational PANGAEA
urn:node:ESS_DIVE mn up operational ESS-DIVE: Deep Insight for Earth Science␣

(continues on next page)

1.1. Project Resources 17

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

→˓Data
urn:node:CAS_CERN mn up operational Chinese Ecosystem Research Network (CERN)

Now display the nodes on a map using the ipyleaflet extension.

First group nodes that are close so they can be drawn with a marker cluster.

[39]: def computeGroupCentroid(nodes):
sx = 0
sy = 0
for n in nodes:

sx += n["location"][1]
sy += n["location"][0]

return (sy/len(nodes), sx/len(nodes))

def computeDistance(a, b):
dx = (a[1]-b[1]) ** 2
dy = (a[0]-b[0]) ** 2
return (dx+dy) ** 0.5

#Initialize the groups with the first node.
#Each entry in the node_groups is a list of nodes that are close to the centroid of␣
→˓those nodes.
node_groups = [

[nodes[0],],
]

for node in nodes[1:]:
added = False
for gnodes in node_groups:

gc = computeGroupCentroid(gnodes)
dist = computeDistance(node["location"], gc)
if dist < 5.0:

gnodes.append(node)
added = True

if not added:
node_groups.append([node,])

print(f"Grouped {len(nodes)} nodes to {len(node_groups)} groups")

Grouped 50 nodes to 24 groups

Now render the nodes using ipyleaflet.

[40]: from ipyleaflet import Map, Marker, CircleMarker, MarkerCluster

m = Map(center=(30, -40), zoom=2)
for ng in node_groups:

if len(ng) == 1:
node = ng[0]
marker = None
if node["type"] == "mn":

marker = Marker(location=node["location"], draggable=False, title=node["name
→˓"])

(continues on next page)

18 Chapter 1. Contents

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

else:
marker = CircleMarker(location=node["location"])

m.add_layer(marker)
else:

markers = []
for node in ng:

marker = None
if node["type"] == "mn":

marker = Marker(location=node["location"], draggable=False, title=node[
→˓"name"])

else:
marker = CircleMarker(location=node["location"])

markers.append(marker)
marker_cluster = MarkerCluster(markers=markers)
m.add_layer(marker_cluster)

m

Map(basemap={'url': 'https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', 'max_zoom': 19,
→˓ 'attribution': 'Map ...

[]:

Object Counts Over Time

Show the number of objects accessible through DataONE over time.

This process uses the solr index to identify the number of different types of objects available

[1]: import requests
import json
import pprint
from datetime import datetime
import dateutil

SOLR_TIME_FORMAT = "%Y-%m-%dT%H:%M:%SZ"

T_NOW = datetime.utcnow()
T_START = datetime(2012,7,1)

[2]: import sys
print(sys.version)

3.7.0 (default, Jun 28 2018, 07:39:16)
[Clang 4.0.1 (tags/RELEASE_401/final)]

[3]: def getObjectCounts(t_start=None, t_end=None):
results = {

"metadata": 0,
"data": 0,
"resource": 0,

}
url = "https://cn.dataone.org/cn/v2/query/solr/"

(continues on next page)

1.1. Project Resources 19

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

params = {
"q":"-obsoletedBy:[* TO *]",
"rows":"0",
"wt":"json",
"indent":"on",
"facet":"on",
"facet.field": "formatType",
"facet.mincount": 1,

}
dq = None
if t_start is not None:

st = f"{t_start:{SOLR_TIME_FORMAT}}"
if t_end is None:

dq = f"dateUploaded:[\"{st}\" TO \"{T_NOW}\"]"
else:

dq = f"dateUploaded:[\"{st}\" TO \"{t_end:{SOLR_TIME_FORMAT}}\"]"
elif t_end is not None:

et = f"{t_end:{SOLR_TIME_FORMAT}}"
dq = f"dateUploaded:[* TO \"{et}\"]"

if dq is not None:
params["q"] = params["q"] + " AND " + dq

response = requests.get(url, params=params)
data = json.loads(response.text)
ftcounts = data["facet_counts"]["facet_fields"]["formatType"]
for i in range(0, len(ftcounts),2):

ft = ftcounts[i].lower()
results[ft] = ftcounts[i+1]

return results

[4]: getObjectCounts()

[4]: {'metadata': 804196, 'data': 1172369, 'resource': 198233}

[5]:
c_date = T_START
object_count = []
columns = ["date", "metadata", "data", "resource"]
print(",".join(columns))
while c_date < T_NOW:

counts = getObjectCounts(t_end = c_date)
entry = (c_date, counts["metadata"], counts["data"], counts["resource"])
print(f"{entry[0]:%Y-%m-%d},{entry[1]},{entry[2]},{entry[3]}")
object_count.append(entry)
c_date = c_date + dateutil.relativedelta.relativedelta(months=+1)

date,metadata,data,resource
2012-07-01,53935,37983,33271
2012-08-01,56013,38337,33636
2012-09-01,57153,38734,33935

(continues on next page)

20 Chapter 1. Contents

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

2012-10-01,58170,39212,34219
2012-11-01,59935,39850,34667
2012-12-01,61498,40576,35250
2013-01-01,63165,40849,36256
2013-02-01,64988,41559,37858
2013-03-01,67136,42468,38513
2013-04-01,78131,43175,48342
2013-05-01,79531,43720,48726
2013-06-01,81426,44486,49083
2013-07-01,82835,45198,49456
2013-08-01,84211,45827,49855
2013-09-01,85626,46494,50189
2013-10-01,101524,91431,65308
2013-11-01,102953,93025,65718
2013-12-01,104262,106207,65993
2014-01-01,105829,107285,66378
2014-02-01,107460,108266,66858
2014-03-01,109182,109013,67379
2014-04-01,110895,110098,68106
2014-05-01,112443,110996,68415
2014-06-01,113896,111644,68789
2014-07-01,115695,112643,69204
2014-08-01,117569,113481,69751
2014-09-01,119238,114091,70542
2014-10-01,121160,147466,71030
2014-11-01,139784,225202,88338
2014-12-01,141679,502607,88847
2015-01-01,144159,508124,89710
2015-02-01,146250,558404,90352
2015-03-01,170810,620899,110496
2015-04-01,174242,649892,111793
2015-05-01,177645,660905,113413
2015-06-01,185625,720123,119226
2015-07-01,192192,790147,123704
2015-08-01,200084,836458,128511
2015-09-01,208453,849627,134790
2015-10-01,213515,855994,138041
2015-11-01,216298,857573,138842
2015-12-01,220646,864802,141069
2016-01-01,223302,868777,141986
2016-02-01,226123,870414,142989
2016-03-01,231065,873424,144912
2016-04-01,260480,878181,147397
2016-05-01,267149,880579,151778
2016-06-01,272268,882501,153953
2016-07-01,277060,885499,156556
2016-08-01,282571,887481,158336
2016-09-01,290742,891994,162117
2016-10-01,294872,893848,163689
2016-11-01,307446,900447,165220
2016-12-01,312058,915351,167228
2017-01-01,318793,927216,169008

(continues on next page)

1.1. Project Resources 21

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

2017-02-01,322898,937484,170277
2017-03-01,326970,947631,171784
2017-04-01,334848,953745,173059
2017-05-01,342194,956625,173989
2017-06-01,349928,960240,175346
2017-07-01,354602,971766,176519
2017-08-01,359828,1057937,177739
2017-09-01,581688,1088075,180015
2017-10-01,592941,1094996,181647
2017-11-01,605424,1109878,182794
2017-12-01,613787,1112706,183967
2018-01-01,642924,1114663,184872
2018-02-01,674201,1120909,187740
2018-03-01,698868,1125055,189670
2018-04-01,707816,1127915,191504
2018-05-01,791613,1141153,192761
2018-06-01,794866,1150686,194455
2018-07-01,796735,1155786,195219
2018-08-01,799284,1161092,196260
2018-09-01,802460,1163023,197085
2018-10-01,803570,1170337,197600
2018-11-01,803734,1171411,197761
2018-12-01,804158,1172252,198195

[7]: import pandas as pd
import matplotlib.pyplot as plt
data_frame = pd.DataFrame(object_count, columns=columns)
data_frame.set_index('date', inplace=True)

plot = data_frame.plot(figsize=(10,4))
plot.set_xlabel("Date")
plot.grid(True)

22 Chapter 1. Contents

DataONE Operations Documentation, Release 2.0.1

[]:

Amount of Content

Number of Contributors

A contributor is a subject that is identified as an author of a dataset.

Authors can be:

• The subject that added the content to DataONE. This is expressed in the system metadata as the submitter.
However, the submitter may not be the author or creator of the content. For example, a data manager who had
no involvement in the creation of the dataset may have uploaded the content.

• The authors identified in the science metadata associated with the dataset. The DataONE indexing service ex-
tracts this information from the metadata and populates the author and related fields of the search index.

Submission Contributors

Submission contributors is expressed as a single system metadata property which is indexed to the submitter field.

The unique values of submitter can be determined by examining the solr index with a facet query:

https://cn.dataone.org/cn/v2/query/solr/
?q=*%3A*
&facet=on
&rows=0
&facet.limit=-1
&facet.field=investigator

which can be processed with using xmlstarlet and wc as small bash script to show the number of unique values:

1 #!/bin/bash
2

3 SOLR_FIELD="${1}"
4 URL="https://cn.dataone.org/cn/v2/query/solr/?q=*%3A*"
5 URL="${URL}&facet=on&rows=0&facet.limit=-1"
6 URL="${URL}&facet.field=${SOLR_FIELD}"
7 echo "URL: ${URL}"
8 curl -s "${URL}" | xml sel -t -m "//lst/lst/int" -v "@name" -n | wc -l

As of this writing, the number of unique submitters is:

./field_count submiter
16340

1.1. Project Resources 23

DataONE Operations Documentation, Release 2.0.1

Authorship Contributors

Authorship information is expressed in several fields in the solr index:

Field Count
author 24636
authorGivenName 11908
authorLastName 5863
authorSurName 24648
authorSurNameSort 24219
investigator 111826
investigatorText 64246
origin 108693
originText 64209
originator 0
originatorText 64209
prov_generatedByUser 0

In order to provide a realistic count, it would be necessary to retrieve the values from the fields of interest, normalize
them to a standard representation, then count the resulting unique values.

1.1.5 Virtual Machine Setup

cn.server.publiccert.filename=/etc/letsencrypt/live/cn-stage-2.test.dataone.org/cert.pem environment.hosts=cn-stage-
2.test.dataone.org cn-stage-unm-2.test.dataone.org

Kernel Purging

/etc/cron.daily/purge-old-kernels:

#!/bin/bash
/usr/local/bin/purge_old_kernels.py -q

Ensure to chmod a+x /etc/cron.daily/purge-old-kernels.

s Use Xenial Kernel —————–

Due to:

https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1787127

it was necessary to upgrade many servers to use the 4.x kernel version.

sudo apt-get install linux-generic-lts-xenial

then restart to pick up the new kernel.

24 Chapter 1. Contents

http://indexer-documentation.readthedocs.io/en/latest/generated/solr_schema.html
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1787127

DataONE Operations Documentation, Release 2.0.1

LVM Resize

Add new device.

Recognize new device:

apt-get install scsitools
rescan-scsi-bus.sh

Format the new disk:

fdisk /dev/sdb
n (for new partition)
p (for primary partition)
1 (partition number)
(keep the other values default)
w (write changes)

fdisk /dev/sdb
t (change the partition type)
8e (for Linux LVM)
w (write changes)

Initialize LVM physical volume:

pvcreate /dev/sdb1

Determine name of volume group:

vgdisplay

Add physical volume to volume group:

vgextend name_of_volume_group /dev/sdb1

New free space should appear in:

vgdisplay

Resize logical volumes to use free space:

lvdisplay

Add space to the logical volume:

lvresize --resizefs --size +931GB /dev/name_of_volume_group/Name

or more manually, add space to a logical volume:

lvextend -L +100G /dev/name_of_volume_group/Name

then resize the filesystem (ext4):

resize2fs /dev/name_of_volume_group/Name

1.1. Project Resources 25

DataONE Operations Documentation, Release 2.0.1

1.2 Member Nodes Resources

The DataONE website has links to several documents which describe DataONE and questions for data entities to address
when they are considering becoming a Member Node. A potential MN should review the following information to help
decide if a partnership with DataONE is appropriate.

• The Member Nodes page at DataONE.

• Member Node Fact Sheet

• Member Node Partnership Guidelines

• The Member Node Description Document, which is submitted as part of the proposal process.

Still have questions? Send an email to mninfo.dataone@gmail.com or submit your question via the Contact Us form.

Member Node Operations

1.2.1 Adjusting Custom Node Properties

Member Nodes generally control the content available in the Member Node document provided through the /node ser-
vice. This document describes custom properties that may be set by the Coordinating Nodes to augment the information
provided by the Member Nodes. Such custom properties are not over-written by a Member Node when the Member
Node registration information is updated.

Custom properties set by the Coordinating Nodes MUST be prefixed by CN_. Such properties will be preserved through
updates to the node registration. Note that the string “CN_” has no meaning other than to act as a mechanism for
distinguishing custom properties from other properties that may be set by the MN.

The value of the custom property ${PROPERTY} for the Member Node ${NODE_ID} can be determined from the
DataONE list nodes API with the following XPath statement:

//node[identifier/text()='${NODE_ID}']/property[@key='${PROPERTY}']

For example, using curl and xmlstarlet:

NODE_ID="urn:node:KNB"
PROPERTY="CN_date_operational"
curl -s "https://cn.dataone.org/cn/v2/node" | \
xml sel -t \
-m "//node[identifier/text()='${NODE_ID}']/property[@key='${PROPERTY}']" -v "."

2012-07-23T00:00:0.000Z

Note that in order to set any properties, the node must be registered. Furthermore, for the node to appear in the
node list, it is necessary for the node to be approved. This is potentially problematic for nodes that are “upcoming”
(i.e. CN_operational_status = upcoming) since such nodes should initially not be synchronizing. As such, it is
necessary for an upcoming Member Node to be registered and approved, but with services flagged as being off. In order
to prevent a node from accidentally setting node state to allow active harvesting, it is recommended that the initial node
registration is created by a different subject to the node operator. This issue will be addressed in a later release of the
infrastructure #8058.

26 Chapter 1. Contents

http://www.dataone.org
http://www.dataone.org/member-nodes
http://www.dataone.org
http://www.dataone.org/sites/all/documents/DataONEMNFACTSheetFormattedDec1.pdf
http://www.dataone.org/sites/all/documents/DataONE_MN_Partner_Guidelines.pdf
http://www.dataone.org/sites/all/documents/Member_Node_Description_Form_2012Jun20_Formatted.docx
mailto:mninfo.dataone@gmail.com
https://www.dataone.org/contact
https://cn.dataone.org/cn/v2/node
https://releases.dataone.org/online/api-documentation-v2.0/apis/CN_APIs.html#CNCore.listNodes
https://redmine.dataone.org/issues/8058

DataONE Operations Documentation, Release 2.0.1

Preferred Custom Properties

The following custom properties are used by systems such as the DataONE search interface and Member Node dash-
board.

For properties that express a date, these MUST be in UTC and formatted as ISO-8601 (YYYY-MM-DDTHH:mm:ss.sssZ).
If the time portion is unknown, then substitute 00:00:00.000. Example:

2017-03-20T15:25:53.514Z

CN_node_name

Provides the same information as the `name <https://releases.dataone.org/online/api-documentation-v2.0/apis/Types.
html#Types.Node.name>`__ element of the node document though may optionally be augmented by DataONE to pro-
vide additional or clarifying details.

Example:

<property key="CN_node_name">node name text string</property>

CN_operational_status

Indicates the current operational status of the Member Node. The value can be one of:

operational: The Member Node is operational and contributing content

replicator: The Member Node is operational but acts only as a replication target

upcoming: The Member Node is anticipated to be operational “soon”.

developing: The Member Node is under active development and testing, should not be shown on dashboard or UI

deprecated: The Member Node has been deprecated and is no longer actively participating in the DataONE environ-
ment

Example:

<property key="CN_operational_status">operational</property>

CN_date_operational

The date that the Member Node became an operational participant in the DataONE environment. This should be the
same time as when CN_operational_status is set to operational or replicator.

Example:

<property key="CN_date_operational">2017-03-20T15:25:53.514Z</property>

1.2. Member Nodes Resources 27

https://search.dataone.org
https://www.dataone.org/current-member-nodes
https://www.dataone.org/current-member-nodes
https://releases.dataone.org/online/api-documentation-v2.0/apis/Types.html#Types.Node.name
https://releases.dataone.org/online/api-documentation-v2.0/apis/Types.html#Types.Node.name

DataONE Operations Documentation, Release 2.0.1

CN_date_upcoming

The date that the Member Node became designated as upcoming, meaning it is expected to soon be participating in an
operational capacity. This should be the same time as when CN_operational_status is set to upcoming.

Example:

<property key="CN_date_upcoming">2017-03-20T15:25:53.514Z</property>

CN_date_deprecated

The date that the Member Node became deprecated from further particpation in the DataONE environment. This
should be the same time as when CN_operational_status is set to deprecated.

Example:

<property key="CN_date_deprecated">2017-03-20T15:25:53.514Z</property>

CN_logo_url

The URL of the logo that is to be shown for the Member Node in user interfaces. Note that the protocol SHOULD be
https.

Example:

<property key="CN_logo_url">https://raw.githubusercontent.com/DataONEorg/member-node-
→˓info/master/production/graphics/web/KNB.png</property>

CN_info_url

A URL that provides additional information about the Member Node and its host. This may for example, point to a
landing page describing the data repository being represented by the Member Node.

Example:

<property key="CN_info_url">https://knb.ecoinformatics.org/</property>

Getting and Setting Custom Properties

Custom Member Node properties are typically set directly in the Coordinating Node LDAP service where node infor-
mation is stored.

A python script, d1nodeprops is available to get and set custom node properties. It is necessary for the CN administrator
to create an ssh tunnel to a Coordinating Node forwarding the LDAP connection for the script to work. For example,
to set the CN_logo_url for the node urn:node:KNB:

ssh -L 3890:localhost:389 cn-ucsb-1.dataone.org

#in another terminal
d1nodeprops -I "urn:node:KNB" -k "CN_logo_url" -p "SOME PASSWORD" -o update \

(continues on next page)

28 Chapter 1. Contents

https://github.com/DataONEorg/DataONE_Operations/blob/master/scripts/d1nodeprops

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

"https://raw.githubusercontent.com/DataONEorg/member-node-info/master/production/
→˓graphics/web/KNB.png"

To list the custom properties that have been set for a Member Node:

d1nodeprops -I "urn:node:KNB" -p "SOME PASSWORD"

[]:

Member Node Deployment

1.2.2 Managing Display of Upcoming Nodes

Upcoming Member Nodes are optionally added to the upcoming Member Nodes list

Adding a MN to the Upcoming Node List

Figure 1. Procedure for listing a MN in the list of upcoming Member Nodes without registering the node in the
production environment.

1. There must be agreement within DataONE and by the MN that they can be listed as upcoming.

2. For the MN to display properly a number of custom properties must be set, and the values for these should be
recorded in the corresponding MN Deployment ticket in readmine.

3. The logo for the MN must be ready for display and present in the web folder on in the member-node-info repos-
itory on GitHub.

4. Adding an node entry in the upcoming.xml document and committing the change to GitHub will trigger the
listing of the node as upcoming in the dashboard.

5. The node should appear in the dashboard within 15 minutes.

Registering an Upcoming Member Node

The process of registering a node will add it to the production node list reported by the Coordinating Nodes.

Figure 2. Procedure for listing a Member Node as upcoming when it is registered with the production Coordinating
Nodes.

1.2.3 Deployment to Production Environment

After a Member Node instance is successfully passing tests it can be deployed to the production environment. The
steps for deployment are:

1. Add the MN logo to the Github repository

2. Add the MN to the list of upcoming Member Nodes

3. Verify that the MN instance is populated with production content, not test content

1.2. Member Nodes Resources 29

https://www.dataone.org/current-member-nodes
https://www.dataone.org/current-member-nodes
https://github.com/DataONEorg/member-node-info/tree/master/production/graphics/web
https://github.com/DataONEorg/member-node-info
https://github.com/DataONEorg/member-node-info
https://github.com/DataONEorg/member-node-info/blob/master/production/upcoming/upcoming.xml

DataONE Operations Documentation, Release 2.0.1

4. Prepare announcement for the MN release

5. Obtain a client certificate for the MN. This certificate must be signed by the Production Certificate Authority.

6. Register the MN in the production environment

7. Update the custom “CN_” node registration properties

8. Approve MN

9. Content starts synchronizing

10. Verify content has synchronized and appears in the search UI

11. Announce the new MN

1. Add MN Logo to GitHub

See the Member Node Info repository on GitHub.

2. Add to Upcoming

When a MN is getting close to deployment, it may be added the “upcoming” MN list that is shown on the DataONE
Member Nodes dashboard.

3. Verify MN Content

It is important that no test content is present on the MN when it is being added to the production environment. Accidental
content can be removed, but it is a process that should be avoided where possible.

Work with the MN operator to ensure no test content remains (if repurposing a test instance) and that the node is
appropriately populated.

4. Prepare Announcement

The public announcement of a new MN requires a bit of back and forwards between DataONE and the MN, so it is best
t start this process early to ensure the announcement document is ready.

5. Obtain Client Certificate

The client certificate is needed for the MN to register with the CN, and for any other actions that require the node to
authenticate.

See the CA project in subversion at: https://repository.dataone.org/software/tools/trunk/ca/

30 Chapter 1. Contents

https://github.com/DataONEorg/member-node-info
https://www.dataone.org/current-member-nodes
https://repository.dataone.org/software/tools/trunk/ca/

DataONE Operations Documentation, Release 2.0.1

6. Register MN

Registering the MN will record the presence of the MN in the Production environment node registry. The CNs will not
interact with the MN until the registration is approved.

7. Add CN_ Properties

After the node is registered

8. Approve MN

9. Content Synchronization

10. Sync and Search Verification

11. Announcement

1.2.4 Baseline Member Node Implementation Requirements

Note: 2018-02-19

This document is in draft status, copied mostly verbatim from subversion at: https://repository.dataone.org/documents/
Projects/cicore/operations/source/member_node_deployment

All Member Nodes, regardless of Tier, share the same baseline requirement of managing their object collection such
that:

1. All objects are identified by a globally unique identifier.

Identifiers provide the primary mechanism for users to access a specific item. Identifiers must conform to
the DataONE persistent identifier specification.

2. The original bytes of submitted objects are always available using the original identifier.

To satisfy DataONE’s preservation policy, the content bound to an identifier does not change and is thus
immutable. Organizations starting with systems that allow overwrites will need additional mechanisms to
ensure access to older versions (via MN_Read.get())

3. Content access policies are respected.

Tier 2 and higher nodes satisfy this requirement by implementing the API and following the functional
requirements for access control implementation. By implication, Tier 1 nodes can only host and expose
public objects.

4. Updates are treated as a separate objects.

An update to an existing object causes creation of a new object and a new identifier, and the object being
replaced is archived. (Archiving removes the object from the search index, but leaves it available via
MN_Read.get(). The isObsoletedBy / obsoletes relationship is established in the system metadata of both
objects to allow navigation through the version chain.)

5. Voluntary deletes are handled as archive actions.

Objects published to DataONE are not deleted, but archived. This helps ensure DataONE’s preservation
requirements are upheld. An archived object has its archived field set to true in its systemMetadata, and the
object remains accessible by its identifier. This applies to all objects ever exposed through the DataONE

1.2. Member Nodes Resources 31

https://repository.dataone.org/documents/Projects/cicore/operations/source/member_node_deployment
https://repository.dataone.org/documents/Projects/cicore/operations/source/member_node_deployment

DataONE Operations Documentation, Release 2.0.1

API regardless of how the content is added to a Member Node. For example, if a Member Node man-
ages their collection with external tools, the system should behave such that deleted content is treated as
archived, rather than actually deleted.

6. Compulsory (or administrative) deletes, are coordinated and executed via the DataONE Coordinating Nodes.

These are true deletes where the content is removed from all nodes, and is done ONLY in cases when
illegal or inappropriate content is discovered and needs to be removed. Because content may be replicated
to other nodes, a Member Node performing a compulsory delete must notify DataONE of the action to
ensure any replicas are also removed. Otherwise the content may remain discoverable and accessible at
other nodes.

Note that the Tier 3 MN_Storage API implements requirements 4, 5, and 6, and exposes that functionality to authorized
users. Tier 1 and 2 member nodes still implement the same functionality, however they do not expose the functionality
through the DataONE MN_Storage API. Instead, creates, updates, and archives are handled through non-DataONE
mechanisms.

1.2.5 Introduction to SSL Certificates

Note: 2018-02-19

This document is in draft status, copied mostly verbatim from subversion at: https://repository.dataone.org/documents/
Projects/cicore/operations/source/member_node_deployment

DataONE uses SSL certificates, specifically X.509 certificates, to secure communication between Clients, Member
Nodes, and Coordinating Nodes. All three of these actor-types should have certificates to offer for an SSL handshake,
although Clients making DataONE requests without certificates are allowed.

Certificates are files that do two things:

1. assert that you are who you say you are, by establishing a chain-of-trust back to an authority your system already
trusts. This is done through inclusion of verifiable digital signatures of the certificate issuer and signers of the
certificate issuers certificate, etc.

2. contain encryption keys to be used in the connection for securing the data passed back and forth.

In the case of CILogon-issued certificates for DataONE, certificates have a third function:

3. CILogon certificates include additional associated Subjects in DataONE that can be used for Authorization.

In very general terms, both sides of the socket connection have to trust one another before a connection can be estab-
lished. Both sides (peers) exchange their certificates, and if each side trusts the otherÕs signing entity contained in the
certificate, the connection is established, and encryption keys are exchanged to allow secure transfer of information.

In the case of CILogon-issued certificates, Tier 2 and higher DataONE CNs and MNs extract the mapped identity and
group Subjects from the certificates when making Authorization decisions.

Each of your systemÕs browsers maintain their own set of trusted certificate authority certificates (ÒCA certsÓ), largely
overlapping, but not completely. Browsers also maintain sets of additional CA certs per user that become trusted upon
the OK of the user. Your system also maintains a set of root certificates, as does your Java installation - these are used
by programmatic SSL connections.

32 Chapter 1. Contents

https://repository.dataone.org/documents/Projects/cicore/operations/source/member_node_deployment
https://repository.dataone.org/documents/Projects/cicore/operations/source/member_node_deployment

DataONE Operations Documentation, Release 2.0.1

1.2.6 Development Contacts

Implementers needing clarification or help using the tools or having technical problems have several ways to get their
questions answered. DataONE has set up a ways to contact the development team.

See also: Communications

Slack

The developers maintain a virtual office of sorts, in that they join a dedicated DataONE Slack channel for asking each
other questions. Implementers are welcome to join the discussion, following the usual etiquette for online communi-
cation. Visit the #ci channel for technical topics.

ask.dataone.org

ask.dataone.org is a searchable compendium of questions and answers, based on the same model as stackoverflow.
Especially if working off-hours, this could be the most direct way to get an answer, as it might already be answered,
and if not, allows you to post the question. Developers try to answer all questions within a 48 hours.

1.2.7 Development iteration

Document Status

Status Comment
DRAFT (CSJ) Initial draft
DRAFT (Dahl)

To enable a repository to communicate using the DataONE Member Node APIs, most groups take an iterative approach,
implementing the lowest level APIs first, and working up through the Tiers. Implementing the DataONE APIs also
involves managing identifiers, System Metadata, content versioning, and data packaging. We touch on these issues
here.

Note: The DataONE Common and DataONE Client libraries provide serialization and deserialization of the DataONE
types and language-specific wrappers for the DataONE APIs.

Implementing the Tier 1 Member Node API

MN developers will need to first implement the MNCore API , which provides utility methods for use by CNs,
other MNs and ITK components. The ping() method provides a lightweight ‘are you alive’ operation, while the
getCapabilities() provides the Node document so software clients can discover which services are provided by
the MN. The CNs also use the getLogRecords() method to aggregate usage statistics of the Node and Object levels
so that scientists and MN operators have access to usage for objects that they are authorized to view.

The bulk of the work within the system is provided by MNRead API methods. The CNs use the listObjects()method
to harvest (or synchronize) Science Metadata from the Member Nodes on a scheduled basis. They also call get(),
getSystemMetadata(), and getChecksum() to verify and register objects in the system. They will occasionally call
synchronizationFailed() when there is an error, and MN operators should use these events to log these exceptions
for getLogRecords(), and should inform the MN operator of the problems in a way they see fit (email, syslog,
monitoring software, etc). Lastly, the getReplica() call is distinguished from the get() call in that it is only used
between Member Nodes that are participating in the DataONE replication system, and that these events are logged

1.2. Member Nodes Resources 33

https://slack.dataone.org/

DataONE Operations Documentation, Release 2.0.1

differently to not inflate download statistics for objects. Implementing the MNRead API requires identifier management,
System Metadata management, versioning, and packaging, described below.

Handling identifiers

To support as many repository systems as possible, DataONE puts few constraints on identifier strings that are used to
identify objects. See the details for the Identifier Type. This flexibility requires that identifiers with special characters
that would affect REST API calls, XML document structure, etc. will need to be escaped appropriately in serialized
form. See the documentation on Identifiers for the details. MN operators will need to ensure that identifiers are
immutable, in that there is a one to one relationship between an identifier and an object (byte for byte). This allows
the DataONE system to use the checksum and byte count declared in System Metadata documents to verify and track
objects correctly. Calling get() on an identifier must always return the same byte stream. See the documentation on
mutability of content for more details.

System Metadata

Each object (Science Data, Science Metadata, or Resource Maps) that is exposed to the DataONE system via MNRead.
listObjects()must have an accompanying System Metadata document. These documents provide basic information
for access, synchronization, replication, and versioning of content. MN operators will need to either store or generate
System Metadata.

One notable component of System Metadata is the formatId field. To support as many repository systems and object
types as possible, DataONE assigns format information to objects according to an extensible list of object formats.
The Object Format List holds a list of types akin to MIME types and file formats. The definitive list is found on the
production CNs. When a new MN, holding a new type of object, joins DataONE, the new Object Formats should be
added to the Object Format List before they are used in the System Metadata formatID field. DataONE has been involved
in the Unified Digital Format Registry project to establish a comprehensive registry of formats, and development is
ongoing. When MN objects are synchronized, objects that are tagged in the Object Format List as holding metadata
(i.e. Science Metadata), will be parsed and indexed on the CN for search and discovery services. The automatic parsing
and indexing is not supported for all types of objects that contain Science Metadata. For objects that are not currently
supported, MN developers should coordinate with the DataONE developers to provide mappings between metadata
fields and fields in DataONE’s search index. See the Content Discovery documentation for details.

Content versioning

Objects in DataONE are immutable. When a scientist or MN operator wants to update an object (Science Data, Science
Metadata, or Resource Map), the process involves the following sequence:

1) Minting a new identifier

2) Creating a new System Metadata document for the new version of the object, and setting the ‘obsoletes’ field to
the previous object identifier

3) Updating the previous object’s System Metadata, setting the ‘obsoletedBy’ field to the new object’s identifier,
and setting the ‘archived’ field to ‘true’.

4) Updating the Member Node data store to include the new object (and the old one). For Tier 1 and 2 MNs, this will
happen outside of the DataONE API. For Tier 3 and Tier 4 MNs, it can be done through the MNStorage.update()
call.

Since one of the main goals of DataONE is to provide a preservation network with citable data to enable reproducible
science, this sequence is critical to the system’s success. There are times when a Member Node won’t be able to
store earlier versions of objects indefinitely, in which case MNs should set a replication policy in their object’s System
Metadata to ‘true’ so that replicas can be made and the system will act as a persistent store of the versioned objects.
However, Member Nodes have suggested that DataONE support mutable objects, and possible ways to support this

34 Chapter 1. Contents

http://mule1.dataone.org/ArchitectureDocs-current/apis/Types.html#Types.Identifier
http://mule1.dataone.org/ArchitectureDocs-current/design/PIDs.html
http://mule1.dataone.org/ArchitectureDocs-current/design/ContentMutability.html
http://mule1.dataone.org/ArchitectureDocs-current/apis/Types.html#Types.ObjectFormatIdentifier
https://cn.dataone.org/cn/v1/formats
http://udfr.org
http://mule1.dataone.org/ArchitectureDocs-current/design/SearchMetadata.html

DataONE Operations Documentation, Release 2.0.1

without impeding the preservation goals of the federation are currently under investigation. DataONE is open for input
on this. If you are facing issues with versioning, please contact support@dataone.org.

Data packaging

Scientists often work with separate objects (files) containing data and metadata, and want to access them as a collection.
However, communities use different packaging technologies that are often specific to their data types. To support col-
lections across a federated network, DataONE chose to represent data packages using the OAI-ORE specification. Also
known as Resource Maps, these documents use RDF to describe relationships among objects (resources). DataONE
has chosen a limited vocabulary to represent associations between objects. Curently, the associations are:

• describes / describedBy

• aggregates / isAggregatedBy

• documents / isDocumentedBy

For instance, a Resource Map describes an aggregation, and the aggregation aggregates a Science Metadata docu-
ment and a Science Data object. In turn, the Science Metadata document documents a Science Data object. These
relationships are captured in the Resource Map as ‘triple statements’, and provide a graph of associations. Resource
Maps may also be more complex, where one Science Metadata document documents many Science Data objects. Some
repositories may find the need to create hierarchical collections, where one Resource Map aggregates another.

Member Node operators will need to store or generate Resource Maps that will get harvested during scheduled syn-
chronization. The CNs will parse the maps and index these data/metadata relationships, to be used in content discovery.
Note that Resource Maps will also need associated System Metadata documents. during this phase of development,
MN operators can make use of the DataONE Common and DataONE Client libraries for building Resource Maps.
Details about data packaging can be found in the architecture documentation.

1.2.8 Development Testing

Contents

• Development Testing

– Member Node Tester

∗ Testing Requirements

· Tier 1 Nodes

· Tier 2 Nodes

· Tier 3 & 4 Nodes

∗ Anatomy of tester failure messages

∗ Identifier Encoding Tests

∗ Authentication and Authorization Tests

– Alternate Testing Approaches

Development testing is done to make sure that the future Member Node is ready for real-world testing in the stag-
ing environment. This includes testing for correct method responses under different circumstances, making sure that
metadata and resource maps parse and are usable, and that the formats used by the node are registered.

1.2. Member Nodes Resources 35

mailto:support@dataone.org

DataONE Operations Documentation, Release 2.0.1

To accomplish this, DataONE has developed a suite of tests that are used to test our own Member Node implementations.
For convenience, we have deployed these tests as a web-based Member Node testing service. Those already familiar
with Maven and JUnit may instead wish to download the tests from our code repository and run the tests locally. Passing
all of the required tests will signal readiness to enter the deployment phase.

While Member Node developers are encouraged to run the MN testing service at any point in their internal development
process, the primary source of guidance on how to implement a method should be the DataONE architecture documen-
tation and API reference. When troubleshooting failed tests, in general, careful rereading of the method documentation
in the context of the failure message is the best way to understand what exactly went wrong, as well as looking at the
source code of the test. Developers are also welcome to contact the DataONE development team for more information
and explanation.

Member Node Tester

Multiple versions of the testers are maintained, corresponding to the major.minor versions of the published API. Within
each tester, the testing service is organized by Tier, so that Tier1 API methods are tested before Tier2 methods, and so
on. Results are also organized by tier, and a summary for each subset of tests is given. If you are planning to deploy a
Tier 1 node, then of course only worry about testing and passing Tier 1 methods.

Testing Requirements

Requirements for testing vary from tier to tier. Most tests rely on existing content, except MN_Storage methods, which
need to test the create, update, and archive methods. Below are listed the general content related requirements for each
Tier.

Tier 1 Nodes

Most of the Tier1 tests rely on listObjects to get an identifier that can be used to run Tier 1 tests. So, Tier 1 nodes need
to have at least one object. Tier 1 also tests that resource maps can be parsed, so if there is only one object, it should be
a resource map. Ideally, a member node would have a representative object for all of the data formats it has objects of.

Tier 2 Nodes

The bulk of Tier 2 testing is testing data security, and so the member node needs to load a set of objects with the
pre-defined access policies.

TODO: make the test objects available as a download.

Tier 3 & 4 Nodes

If you are implementing a Tier 3 node, you do not need to start with any content in the node to test Tier 1 and 2 methods.
Instead, the testers will create the data objects they need, provided that the create method is working properly.

You will probably, however, wish to clear out the test objects if the node under test is going into production.

TODO: instructions on how to identify these objects (they all have the same owner, I believe)

Tier 4 tests are limited to testing exception handling, since most of this functionality requires interaction with Coordi-
nating nodes and other member nodes.

36 Chapter 1. Contents

http://mncheck.test.dataone.org:8080/

DataONE Operations Documentation, Release 2.0.1

Anatomy of tester failure messages

Tests can fail for many reasons, so the best a failure message can hope to do is be clear about the circumstances that
caused the failure, and provide relevant diagnostic information. Each failure message is composed of the following
parts:

1. The failure description

2. REST call details

3. stack trace

Of the three, the failure description is the most useful for understanding the what failed. In some cases the description
is the exception thrown (Class name:: detail code: http status: exception message), and in other cases it is just a message
explaining the failure.

The REST call details are useful for recreating the call that resulted in a failure. Remembering that many tests (es-
pecially in Tier1) first call listObjects to get an identifier to work with for the main test, do not be surprised to see a
problem in listObjects even if the test is for another method. Also note that in cases where it is known that the failure
is client-side (not server side), the REST call is usually not provided.

The stack trace is there to debug client-side exceptions, or to find the spot in the client code that where an exception
was thrown. Usually, this only helpful with content related problems.

Identifier Encoding Tests

For the methods that take an Identifier in the URL of the method call, identifier encoding tests are performed to make
sure that the Member Node can handle the encoded identifiers properly. About 30 identifiers using characters from
different ranges of the Unicode standard are tested against each of these methods.

If one example fails, the entire test fails, and you will need to do some detective work to find out the problem. Comparing
suspicious characters in the failing identifier to characters in the passing examples can help to narrow the problem. Also,
in the name of the identifier itself is a terse indication of the types of characters being tested, and in one case, the word
‘tomcat’ is used as it was first found to be problematic with certain tomcat web server configurations.

Authentication and Authorization Tests

Tier 2 and higher MNs will be subject to Authorization and Authentication testings. In this case, it is mostly the same
API method being tested under different circumstances, and to ensure that various Access Policies are being interpreted
correctly vs. a set of users (as represented by calls made by the testing service using different X509 client certificates).

As with the Identifier encoding tests, each test contains several related examples. and so comparing failing examples to
passing examples gives a sense of where the problem may be. Often times, one root problem in the MN’s authorization
algorithm can cause dozens of failures.

For consistency with other DataONE nodes, DataONE strongly recommends using the reference authorization algo-
rithms in d1_common_python or d1_common_java if at all possible. For those not using these packages, note that not
only the algorithm will need to be transcribed, but you will need to also need to do Subject comparisons on canonical
serializations of the client subject(s) and Subjects in the object’s AccessPolicy.

1.2. Member Nodes Resources 37

DataONE Operations Documentation, Release 2.0.1

Alternate Testing Approaches

If the web tester facility is not flexible enough, the d1_integration package is available for download, so that it can be
run from a local machine. Testing Tier2 and higher nodes will require some setup and acquisition of testing certificates
to work, however.

1.2.9 DataONE infrastructure environments

In addition to the production environment that the end user sees when interacting with DataONE services, DataONE
maintains several other independent environments for development and testing. These environments emulate the pro-
duction environment and allow developing and testing of DataONE components without affecting the production en-
vironment.

Each environment is a set of Coordinating Nodes (CNs) along with a set of Member Nodes (MNs) that are registered
to those CNs. Each environment maintain sets of content, formats, and DataONE identities independent of each other.
By registering a MN to an environment, you enable content to synchronize with the CNs, and be replicated to other
nodes in the same environment.

Since there are no connections between the environments, information registered in one environment - certificates,
DataONE identities, and formats - cannot be carried over into another environment.

The environments are:

Environ-
ment

URL Description

Produc-
tion

https://cn.dataone.org Stable production environment for use by the public.

Staging https://cn-stage.test.
dataone.org

Testing of release candidates.

Sandbox https://cn-sandbox.test.
dataone.org

Like Production, but open to test instances of MNs. May contain both
test and real science objects.

Develop-
ment

https://cn-dev.test.
dataone.org

Unstable components under active development.

The Production environment is only used by completed MNs that hold production quality data.

If a MN is under development or if it is experimental in nature, for instance, if the purpose is to learn more about the
DataONE infrastructure or if the MN will be populated with objects that may not be of production quality, one of the
test environments should be used.

To register a Member Node into an environment, follow the steps in Node Registration.

1.2.10 Appendix: Deploying the Generic Member Node

The GMN Server supports the `DataONE Member Node API`_ and can be used as a general data and metadata
repository. The GMN is used both as a Python reference implementation of the DataONE MemberNode API a working
command-line based member node implementation.

For current information on downloading and deploying the GMN stack, see the GMN Documentation on Python-
Hosted.org.

38 Chapter 1. Contents

https://cn.dataone.org
https://cn-stage.test.dataone.org
https://cn-stage.test.dataone.org
https://cn-sandbox.test.dataone.org
https://cn-sandbox.test.dataone.org
https://cn-dev.test.dataone.org
https://cn-dev.test.dataone.org
http://pythonhosted.org/dataone.generic_member_node/
http://pythonhosted.org/dataone.generic_member_node/

DataONE Operations Documentation, Release 2.0.1

1.2.11 Plan the implementation

Status: Draft
Each institution that wishes to join DataONE as a MN will have unique decisions to make with regard to their MN
implementation. The end goal is to be able to serve content (data and metadata) as part of the larger network. There
may be many possible paths to this goal, each with different demands on available resources and with different amounts
of technical effort involved.

Since there are a number of groups with expertise in the DataONE API and other software, MN developers should
communicate with fellow developers and the DataONE development team in order to capitalize on previous experience
before selecting an implementation strategy and during implementation. Based on the requirements of the organization,
input from fellow developers and the DataONE development team, MN developers should create an implementation
plan that will guide the development, testing, deployment and maintenance of the service.

Operators should understand the DataONE MN Tiers, and should consider different software approaches when devel-
oping this plan.

Choosing an implementation approach

When planning the MN implementation, developers should consider the following possibilities, listed in order of in-
creasing effort.

(A) Use an existing repository that already has a DataONE API

(B) Modify existing software that implements the DataONE API to work with an existing repository

(C) Use existing DataONE libraries to add DataONE APIs to an existing repository

(D) Write custom software from scratch that implements the DataONE API and communicates with an existing
repository

(E) Write a custom repository with a DataONE API from scratch.

For (A) and (B), DataONE provides two complete MN implementations that can be used for exposing data to DataONE.
These are Metacat and GMN . Both support all MN tiers. Other institutions have also added DataONE interfaces to
their existing repositories and these may provide good starting points.

For (C), DataONE provides the DataONE Common Library and DataONE Client Library for Java and Python. These
libraries provide language specific abstractions for interacting with the DataONE infrastructure. In particular, they
make it easy to perform and respond to DataONE API calls and produce and consume the DataONE types used in
those calls. As there are many subtle implementation details that relate to issues such as URL-encoding, Unicode,
REST messaging formats and working with the DataONE types, it is highly recommended to use these libraries if
possible.

For (D) and (E), DataONE provides extensive documentation of the DataONE API and types. The documentation
covers details such as URL-encoding, REST messaging formats and usage for all APIs. In addition, developers should
work with the community and the DataONE development team to ensure that their implementation is correct. All the
existing implementations are open source, and can be consulted if anything is unclear in the documentation. The source
is available in the DataONE Subversion Repository.

Even if a MN will eventually require a custom implementation, it may be possible to use an existing MN implementation
to quickly get an MN online, so that the organization can have a presense on DataONE while a fully functional MN is
being implemented.

TODO
Create a page for existing MN implementations

TODO
Verify that the Java Client Library page is up to date

1.2. Member Nodes Resources 39

https://repository.dataone.org/software/cicore

DataONE Operations Documentation, Release 2.0.1

TODO
Point to releases.dataone.org for common and libclient downloads

1.2.12 Member Node Approval Process

After reviewing DataONE literature and deciding that a partnership with DataONE would be beneficial to all parties, a
Member Node will, working with project personnel, prepare a “proposal” including information about data holdings,
scope of interaction with DataONE, etc. This includes completion of a Member Node Description Document.

The DataONE Member Nodes team will evaluate the proposal using several of the criteria below:

Selection criteria

• First Principle: Select MNs for joining DataONE based on number of instantiations.

• Second Principle: Select MNs based on quantity and quality of data.

• Third Principle: Select high-profile MNs.

• Fourth Principle: Select pragmatically - knowing that there are resources and enthusiasm to complete the tasks.

• Fifth Principle: Select MNs based on their ability to contribute to long-term sustainability.

• Sixth Principle: Select MNs that are diverse and geographically distributed so that we cover a range of MN types
and globally distributed nodes.

• Seventh Principle: Select based on showing exemplars for what we want DataONE to be.

Criteria for Standing Up a DataONE Member Node

• Size and visibility of the community represented by the candidate MN.

• The collections are significant or enable new science or both.

• Fills significant gaps in the content available through DataONE.

• The data are unique data in the broader community.

• Collections are strong in breadth, depth or both

• The candidate brings significant contributions to the DataONE resource base, including: #. strategic partnerships
#. professional expertise in managing data, computing, administration, etc. #. synergistic services #. new
funding streams or other sustainability enhancing resources #. technical resources such as storage capacity,
bandwidth, and processing power #. compatibility with DataONE services, minimizing cost of deployment

• The candidate adds diversity to the collective membership of DataONE such as through: #. geographic diversity:
a new state or region, new country, new continent #. under-represented group #. linguistic and cultural diversity
#. different type of institution #. diversity of funding sources

• The candidate offers compliance with best practices and standards, including: #. quality assurance #. data
sharing policies #. metadata creation #. security

40 Chapter 1. Contents

http://www.dataone.org/sites/all/documents/Member_Node_Description_Form_2012Jun20_Formatted.docx

DataONE Operations Documentation, Release 2.0.1

1.2.13 Member Node Deployment Checklist WORKING DRAFT

Overview

Four distinct phases of activity need to be undertaken to successfully become a Member Node (MN) in the DataONE
federation of repositories. While these phases are presented linearly for clarity and planning, some steps will often be
done in parallel with others.

Planning

Developing Testing Operating

Determine feasibility

Join DataONE

Scope the implementation

Plan the implementation

Develop MN software

Register Formats

Passing
MN Tests?

Do Staging Tests

Register in
Production

Mutually
Accept

Announce Deployment

Maintain MN Operations

Participate in MN forums

Planning

Plan the new Member Node.

• Determine feasibility
Member Node representatives review the Member Node Documentation, in particular the DataONE Partnership
Guidelines and determine if a partnership with DataONE makes sense, and if the organization has the resources
required for successfully implementing and operating a MN. Member Nodes can ask DataONE for information
or help via the Contact Us page on the DataONE website.

• Join the DataONE federation

1.2. Member Nodes Resources 41

http://www.dataone.org/sites/all/documents/DataONE_MN_Partner_Guidelines.pdf
http://www.dataone.org/sites/all/documents/DataONE_MN_Partner_Guidelines.pdf
https://www.dataone.org/contact
http://www.dataone.org/

DataONE Operations Documentation, Release 2.0.1

– Member Node representatives, with assistance from DataONE personnel, collate MN information (such as
high-level descriptions of the data the MN will provide).

– The MN creates a Proposal. This includes completion of the Member Node Description Document. [we
need a detailed process below this]

– Submits MN Proposal to DataONE for review. See Member Node Approval Process.

– After an agreement has been reached to proceed, the Member Node requests a DataONE identity which
grants access to https://docs.dataone.org/ and Redmine (for monitoring/tracking purposes). MN personnel
will also be added to distribution lists (such as the DataONE developers list) and meetings (bi-weekly
Member Node Forum, etc.).

• Scope the implementation
The decisions made during this step will drive the details of planning the implementation below.

– Data: First, the MN should decide how much of and what data they wish to make discoverable via DataONE.
Some MNs choose to expose all their data, others only some, and still others expose all their data to a limited
audience.

The MN should also consider the mutability of their data; i.e. is their data static or continuously updated,
or a combination of these characteristics.

– DataONE Functionality: In conjunction with defining the scope of their holdings made visible via
DataONE, the MNs also must select-tier

Member Nodes choose to expose various services, which we have organized into four tiers, starting with the
simple read only access (Tier 1) and progressing through more complex services including authentication
(Tier 2), write access (Tier 3), and replication (Tier 4). Select the level of functionality that the MN will
provide as a partner in the DataONE infrastructure.

– Member Node Software Stack: Decide if the MN will be fully or partially based on an existing software
stack, such as Metacat or GMN, or if a completely custom implementation is required, or if a hybrid ap-
proach will be used to adapt an existing DataONE compatible software system to interact with an existing
repository system.

• implementation-planning

After determining the scope of data holdings to be exposed via DataONE and the related questions above, the
MN will determine the best approach for the MN implementation.

1. The MN will need to plan for any needed infrastructure changes at their site.

2. Data: if not all data holdings will be made discoverable via DataONE, the MN will need to plan/develop a
mechanism to identify what data is to be harvested or create a subset of data for DataONE use.

In any case, each data object will need to be assigned a DOI if not already assigned one “locally”.

1. Functionality: Based on the desired Tier of operations, the MN may need to implement additional [security
measures - this isn’t the right way to say this].

2. Software Stack/other development: Depending on resource requirements for any software development (i.e.
new/modified software stack), the MN should plan to allocate appropriate (human) resources to the effort.

Determine if there will be new data formats or new metadata formats which need to be registered. An
example of this might be [put an example here]. If there is no software stack development or no new
data/metadata formats to be registered, the Developing phase will be less costly in terms of time and
resources.

1. Define a data management plan. If the MN already has an institutional DMP in place, this may be used or
modified to reflect interactions with DataONE.

42 Chapter 1. Contents

http://www.dataone.org/sites/all/documents/Member_Node_Description_Form_2012Jun20_Formatted.docx
https://docs.dataone.org/
http://redmine.dataone.org/

DataONE Operations Documentation, Release 2.0.1

2. Consider the question of persistent identifiers (related to the mutability of data issue). See Identifiers in
DataONE.

Developing

The scope of the developing phase is to build and test a working member node that passes the basic tests in the web-
based Member Node Tester. The main things to put in place are the member node itself and any formats that would be
new to DataONE.

• Develop MN Software
Unless you are fortunate to already be using Metacat, or don’t have an existing data collection, developing the
Member Node usually involves writing at least some integration code, and for some organizations, implementing
the API methods themselves. At this point in the process you will be simply following your development plan.

You can iteratively use the web-based Member Node testing service throughout your development process to
measure incremental progress.

– development-testing

• Register Formats
If you are working with a format new to DataONE, it will need to be registered before D1 can successfully
synchronize content registered with that format. This is a distinct process that is also set up to run outside of
Member Node deployment. If you are registering a new metadata format, DataONE developers will need to
build, test, and deploy an indexing parser and html renderer to the CNs. Testing these elements is best done in
DEV, with the content of the new format originating either from the new member node or by submitting sample
content to an existing node in the DEV environment. This decision should be discussed with coredev.

• Passing MN Tests?
DataONE provides a Member Node Testing service to test that the Member Node API is implemented correctly.
When all required tests are passing, you are ready to enter the Testing phase, where more thorough testing is
done.

– development-testing

Testing

Once all data formats are registered and your software is fully developed, whether by yourself or by utilizing an existing
MN software stack, you can then deploy and configure your node and register it to our Stage environment to allow us
to conduct a real-world test in an environment that is identical to the Production environment. The end-point of this
phase is a fully functional and integrated Member Node “in production”.

• Test in STAGE
STAGE testing allows DataONE to conduct a real-world tests in an environment that is identical to the Production
environment. It is the first time that the entire Member Node’s content is synchronized, so this is the place
where non-systematic content issues are usually revealed. Configuration issues are also identified here, especially
related to certificates and user subjects.

STAGE testing involves the following steps:

1. Member Node team registers the live Member Node into STAGE environment, using

– STAGE as the target environment

– which MN client certs???

– which CN cert???

1.2. Member Nodes Resources 43

http://mule1.dataone.org/ArchitectureDocs-current/design/PIDs.html
http://mule1.dataone.org/ArchitectureDocs-current/design/PIDs.html

DataONE Operations Documentation, Release 2.0.1

– which CILogon CA??

2. Member Node Service tests are run against the node to uncover any configuration or content issues.

3. DataONE operations support approves the node registration and the node begins synchronizing content.
DataONE reports back any problems that might arise.

4. The Member Node team and DataONE jointly reviews the presentation of content in ONEMercury.

• Deploy in Production Environment
After successful testing in the Stage environment, the MN can be deployed and registered in the Production
environment (see register-in-production). Registering the MN in the Production environment is the final technical
step required for DataONE to approve the node and for it to enter into operational status.

• Mutual Acceptance
After the node is registered in the Production environment, both the node operators and DataONE will do a final
review on the node to determine that it is operating as expected. This includes checks for content disparities
and other issues that may not be detected by the automated tests. The node description and other metadata
are checked for consistency and clarity. When the review is complete, both DataONE and the node operators
mutually approve the registration and move the MN into an operational state.

mutual-acceptance

Operating

Operate the MN in production.

• Announcement
The MN organization announces the new MN and DataONE showcases the MN through channels such as the
DataONE newsletter and press releases.

• Ongoing Production operations
The MN is operational and delivers services to the broader research community. Coordinating nodes monitor
the MN to ensure that it operates as intended. The node’s data and metadata are made available via the various
MN and Coordinating MN services. Logs are kept on all services provided, and the Coordinating nodes provide
automated access to aggregated statistics back to the MN operators.

• Participate in MN forums
The MN organization participates in MN forums to help monitor and evolve the DataONE federation to meet the
research data needs of the community.

1.2.14 Member Node Deployment Checklist

status: under development

44 Chapter 1. Contents

DataONE Operations Documentation, Release 2.0.1

Overview

This document provides details about the process of becoming a DataONE member node. For an overview of the
process, see Member Node Deployment Process on the main website.

The process of becoming a DataONE Member Node can be viewed as four phases: Planning, Developing, Testing, and
Operating. While we present these as a linear process, for clarity and planning, steps are often done in parallel and a
given organization may be doing some tasks in a later phase while the bulk of effort is in an earlier phase.

Planning

Developing Testing Operating

Determine feasibility

Join DataONE

Scope the implementation

Plan the implementation

Develop MN software

Register Formats

Passing
MN Tests?

Do Staging Tests

Register in
Production

Mutually
Accept

Announce Deployment

Maintain MN Operations

Participate in MN forums

Planning

Plan the new Member Node.

• Determine feasibility
Member Node representatives review the Member Node Documentation, in particular the DataONE Partnership
Guidelines and determine if a partnership with DataONE makes sense, and if the organization has the resources
required for successfully implementing and operating a MN. Member Nodes can ask DataONE for information
or help via the Contact Us page on the DataONE website.

• Join the DataONE federation

1.2. Member Nodes Resources 45

http://www.dataone.org/member-node-deployment-process
http://www.dataone.org/sites/all/documents/DataONE_MN_Partner_Guidelines.pdf
http://www.dataone.org/sites/all/documents/DataONE_MN_Partner_Guidelines.pdf
https://www.dataone.org/contact
http://www.dataone.org/

DataONE Operations Documentation, Release 2.0.1

– Member Node representatives, with assistance from DataONE personnel, collate MN information (such as
high-level descriptions of the data the MN will provide).

– The MN creates a Proposal. This includes completion of the Member Node Description Document. [we
need a detailed process below this]

– Submits MN Proposal to DataONE for review. See Member Node Approval Process.

– After an agreement has been reached to proceed, the Member Node requests a DataONE identity which
grants access to https://docs.dataone.org/ and Redmine (for monitoring/tracking purposes). MN personnel
will also be added to distribution lists (such as the DataONE developers list) and meetings (bi-weekly
Member Node Forum, etc.).

• Scope the implementation
The decisions made during this step will drive the details of planning the implementation below.

– Data: First, the MN should decide how much of and what data they wish to make discoverable via DataONE.
Some MNs choose to expose all their data, others only some, and still others expose all their data to a limited
audience.

The MN should also consider the mutability of their data; i.e. is their data static or continuously updated,
or a combination of these characteristics.

– DataONE Functionality: In conjunction with defining the scope of their holdings made visible via
DataONE, the MNs also must select-tier

Member Nodes choose to expose various services, which we have organized into four tiers, starting with the
simple read only access (Tier 1) and progressing through more complex services including authentication
(Tier 2), write access (Tier 3), and replication (Tier 4). Select the level of functionality that the MN will
provide as a partner in the DataONE infrastructure.

– Member Node Software Stack: Decide if the MN will be fully or partially based on an existing software
stack, such as Metacat or GMN, or if a completely custom implementation is required, or if a hybrid ap-
proach will be used to adapt an existing DataONE compatible software system to interact with an existing
repository system.

• implementation-planning

After determining the scope of data holdings to be exposed via DataONE and the related questions above, the
MN will determine the best approach for the MN implementation.

1. The MN will need to plan for any needed infrastructure changes at their site.

2. Data: if not all data holdings will be made discoverable via DataONE, the MN will need to plan/develop a
mechanism to identify what data is to be harvested or create a subset of data for DataONE use.

In any case, each data object will need to be assigned a DOI if not already assigned one “locally”.

1. Functionality: Based on the desired Tier of operations, the MN may need to implement additional [security
measures - this isn’t the right way to say this].

2. Software Stack/other development: Depending on resource requirements for any software development (i.e.
new/modified software stack), the MN should plan to allocate appropriate (human) resources to the effort.

Determine if there will be new data formats or new metadata formats which need to be registered. An
example of this might be [put an example here]. If there is no software stack development or no new
data/metadata formats to be registered, the Developing phase will be less costly in terms of time and
resources.

1. Define a data management plan. If the MN already has an institutional DMP in place, this may be used or
modified to reflect interactions with DataONE.

46 Chapter 1. Contents

http://www.dataone.org/sites/all/documents/Member_Node_Description_Form_2012Jun20_Formatted.docx
https://docs.dataone.org/
http://redmine.dataone.org/

DataONE Operations Documentation, Release 2.0.1

2. Consider the question of persistent identifiers (related to the mutability of data issue). See Identifiers in
DataONE.

Developing

The scope of the developing phase is to build and test a working member node that passes the basic tests in the web-
based Member Node Tester. The main things to put in place are the member node itself and any formats that would be
new to DataONE.

• Develop MN Software
Unless you are fortunate to already be using Metacat, or don’t have an existing data collection, developing the
Member Node usually involves writing at least some integration code, and for some organizations, implementing
the API methods themselves. At this point in the process you will be simply following your development plan.

You can iteratively use the web-based Member Node testing service throughout your development process to
measure incremental progress.

– development-iteration

– development-testing

– test-system

• Register Formats
If you are working with a format new to DataONE, it will need to be registered before D1 can successfully
synchronize content registered with that format. This is a distinct process that is also set up to run outside of
Member Node deployment. If you are registering a new metadata format, DataONE developers will need to
build, test, and deploy an indexing parser and html renderer to the CNs. Testing these elements is best done in
DEV, with the content of the new format originating either from the new member node or by submitting sample
content to an existing node in the DEV environment. This decision should be discussed with coredev.

• Passing MN Tests?
Once the required tests of the Member Node testing service are passing, (see development-testing) the prospective
Member Node is ready to enter the Testing phase, where more thorough testing is done.

Testing

Once all data formats are registered and your software is fully developed, whether by yourself or by utilizing an existing
MN software stack, you can then deploy and configure your node and register it to our Stage environment to allow us
to conduct a real-world test in an environment that is identical to the Production environment. The end-point of this
phase is a fully functional and integrated Member Node “in production”.

• Test in STAGE
STAGE testing allows DataONE to conduct a real-world tests in an environment that is identical to the Production
environment. It is the first time that the entire Member Node’s content is synchronized, so this is the place
where non-systematic content issues are usually revealed. Configuration issues are also identified here, especially
related to certificates and user subjects.

STAGE testing involves the following steps:

1. Member Node team registers the live Member Node into STAGE environment (see Node Registration)

2. Member Node Service tests are run against the node to uncover any configuration or content issues.

3. DataONE operations support approves the node registration and the node begins synchronizing content.
DataONE reports back any problems that might arise.

1.2. Member Nodes Resources 47

http://mule1.dataone.org/ArchitectureDocs-current/design/PIDs.html
http://mule1.dataone.org/ArchitectureDocs-current/design/PIDs.html

DataONE Operations Documentation, Release 2.0.1

4. The Member Node team and DataONE jointly reviews the presentation of content in ONEMercury.

• Deploy in Production Environment
After successful testing in the Stage environment, the MN can be deployed and registered in the Production
environment (see register-in-production). Registering the MN in the Production environment is the final technical
step required for DataONE to approve the node and for it to enter into operational status.

• Mutual Acceptance
After the node is registered in the Production environment, both the node operators and DataONE will do a final
review on the node to determine that it is operating as expected. This includes checks for content disparities
and other issues that may not be detected by the automated tests. The node description and other metadata
are checked for consistency and clarity. When the review is complete, both DataONE and the node operators
mutually approve the registration and move the MN into an operational state.

mutual-acceptance

Operating

Operate the MN in production.

• Announcement
The MN organization announces the new MN and DataONE showcases the MN through channels such as the
DataONE newsletter and press releases.

• Ongoing Production operations
The MN is operational and delivers services to the broader research community. Coordinating nodes monitor
the MN to ensure that it operates as intended. The node’s data and metadata are made available via the various
MN and Coordinating MN services. Logs are kept on all services provided, and the Coordinating nodes provide
automated access to aggregated statistics back to the MN operators.

• Participate in MN forums
The MN organization participates in MN forums to help monitor and evolve the DataONE federation to meet the
research data needs of the community.

1.2.15 Member Node Documentation

The DataONE website has links to several documents which describe DataONE and questions for data entities to address
when they are considering becoming a Member Node. A potential MN should review the following information to help
decide if a partnership with DataONE is appropriate.

• The Member Nodes page at DataONE.

• Member Node Fact Sheet

• Member Node Partnership Guidelines

• The Member Node Description Document, which is submitted as part of the proposal process.

Still have questions? Send an email to mninfo.dataone@gmail.com or submit your question via the Contact Us form.

48 Chapter 1. Contents

http://www.dataone.org
http://www.dataone.org/member-nodes
http://www.dataone.org
http://www.dataone.org/sites/all/documents/DataONEMNFACTSheetFormattedDec1.pdf
http://www.dataone.org/sites/all/documents/DataONE_MN_Partner_Guidelines.pdf
http://www.dataone.org/sites/all/documents/Member_Node_Description_Form_2012Jun20_Formatted.docx
mailto:mninfo.dataone@gmail.com
https://www.dataone.org/contact

DataONE Operations Documentation, Release 2.0.1

1.2.16 Mutable Content Member Node Development

Document Status

Status Comment
DRAFT (Nahf) Initial draft

Purpose

This document is meant as an introduction to the DataONE infrastructure for operators of repositories that manage
persistent mutable entities and wish to join DataONE as a Member Node. Member Nodes are required to provide access
to identified, immutable entities, so the challenge for these repositories is to meet that requirement. This document will
layout the concepts needed to determine the best implementation approach, whether it be internalizing version-level
persistence and implementing the DataONE Member Node API, going the Slender Node route, or deploying a pre-build
Member Node and publishing selected versions to it.

Terminology

Because DataONE has a different storage model from repositories of mutable content, great care has been taken in
this document to avoid ambiguous or overloaded terminology. To that end, some terms are defined up front to avoid
confusion.

entity
the uniquely identified, persisted electronic item being stored, whether mutable or not, in the MN repository

object
a uniquely identified, persisted and immutable representation of the entity, with the semantics of “version”.

version
synonymous with object, also implying immutability.

immutable
functionally, an entity is immutable if a byte-for-byte equivalent representation is retrievable indefinitely, verifi-
able by checksum comparison.

series
the ordered set of objects that arise from a changing entity.

series head
the most current object of a series

system metadata
(a.k.a. sysmeta) the DataONE metadata document that contains all of the administrative properties of the object.
There is one sysmeta per object.

1.2. Member Nodes Resources 49

DataONE Operations Documentation, Release 2.0.1

Synopsis

DataONE manages the synchronization and replication of persisted, immutable versions of entities it calls objects. For
repositories that manage mutable entities, the main challenge is how to reflect these mutable entities as immutable
objects. As of version 2, DataONE supports this through recognition of an additional identifier field for the mutable
entity, as long as a unique identifier for the version is also still provided.

With these two identifiers, DataONE can see Member Nodes that manage mutable content as Member Nodes that host
only the latest version of an entity. Over time, it will synchronize and replicate a significant portion of those versions
as immutable objects, and be able to resolve the entity identifier to the object representing the most current version of
that series.

This approach can lead to complexities that increase with the volatility of the entity and removal of past-version system
metadata records. In the case of highly volatile entities, the main issue is the reliability of the current object getting
persisted as an object in DataONE, and being useful for data consumers. In the case of removal of past-version system
metadata, the main issue is object orphaning (the inability to further maintain the synchronized objects).

MN API implementers will also need to be able to reflect their data management actions into actions understood by
DataONE. The final section will be devoted to recipes for a wide range of potential data management actions.

Important Concepts

Determining Content Immutability

The MNRead API is primarily an API for versions, with layered semantics that allow the retrieval of the head of a
series. When presented an object identifier, MN Read API methods MUST return the byte array originally persisted as
that object. DataONE ensures this by periodically validating the checksum of the object, and flagging any copy of an
object it finds invalid.

Even if persisted faithfully, repository owners should be aware of any post-processing that might occur during object
retrieval, either within the application, or the web server container, and take steps to eliminate them, as they are potential
sources of mutability, especially with software component upgrades.

Synchronization and Replication

Through synchronization, DataONE registers new objects to its collection, and for objects of type METADATA and
RESOURCE_MAP, replicates the objects to the CN for downstream index processing. Synchronization also triggers
Member Node replication of DATA objects, which is a process that sends requests to volunteering Member Nodes to
preserve the object bytes. Under typical operating conditions, this process can take from 3 to 20 minutes. Under periods
of routine maintenance, these services can be down for 3 - 24 hours. Other variables that can impact this time is the
amount of backlog synchronization has to work through, the Member Node’s synchronization schedule, and network
problems.

For Member Nodes of mutable content, the main concern is whether the version of the entity remains available between
the time it is queued for synchronization, and when it is retrieved.

50 Chapter 1. Contents

DataONE Operations Documentation, Release 2.0.1

Update Location

The update location for each object is the authoritative Member Node listed in an object’s system metadata. The update
location is the only Node where changes to an entity (reflected as creation of a related object) or an object’s system
metadata can take place. This is done both to avoid race conditions (changes coming from two locations on the system
at the same time), and to prevent other users from accidentally or intentionally registering objects on other Member
Nodes and effectively hijacking control of an entity.

Updated entities and system metadata from the authoritative Member Node get synchronized to the DataONE CNs,
and replicated out to MNs listed as replica nodes for that object. Attempted updates originating from any other node
are rejected.

If the listed authoritative Member Node of an object no longer has that system metadata, it is said to have been orphaned,
making it difficult to update system metadata properties without administrative intervention.

DataONE update logic

Since DataONE persists only immutable objects, an update to an entity is accomplished by creating a new object that
references its predecessor through the ‘obsoletes’ property in the system metadata, as well as associating the entity
identifier. The obsoletes reference is vital for MNs that only expose immutable objects, and the association of the
entity identifier vital for MNs that manage mutable entities and don’t maintain system metadata for previous versions
exposed as objects.

Preferred Implementation

The two main problems to be overcome by Member Nodes of mutable content are decreased retrieval reliability and
object orphaning.

Of the two, the least burdensome of the two to address is object orphaning. The idea is to keep system metadata for
all exposed versions, regardless of whether or not the object corresponding to the version is still retrievable. Doing so
ensures Member Node local control over all synchronized versions, and avoids orphaning the object. It also provides
DataONE with more reliable provenance to allow better resolution of the entity identifier to the latest object available.

This can be accomplished either by following the slender node design (GMN configured to use the Remote URL mode),
or building system metadata storage into the custom implementation.

The second problem, decreased retrieval reliability, is directly related to the ability of DataONE to successfully syn-
chronize and replicate each version as an object. The unavoidable synchronization lag is the main factor to this problem,
as is the volatility of the entity. Highly volatile or regularly changing entities will frustrate synchronization attempts,
as will DATA entities that disallow replication.

A worst case scenario is an end-user calling cn.resolve using the entity identifier which points back to the latest known
version on the Member Node, but that returns a NotFound because the newer version is still waiting to be synchronized,
and the older version is no longer hosted. In this way, a published object can temporarily be NotFound on the DataONE
systems.

Ideally, a local cache of previous versions is maintained to compensate for the worst of synchronization lags, on the
order of 24 hours to 3 days.

1.2. Member Nodes Resources 51

DataONE Operations Documentation, Release 2.0.1

Identifying versions as immutable objects

Assuming that the entities to be exposed to DataONE can reasonably be expressed as a series of immutable objects,
the task is to properly identify and describe each version. The rules for this are straightforward:

1. Each version MUST be assigned an object identifier that is globally unique and IS NOT the entity identifier. This
identifier is mapped to the identifier property.

2. Each version MUST have the entity identifier associated to it via the seriesId property.

3. The object identifier MUST be able to retrieve the same byte array as was determined when the version was
identified, for as long as that object is available on the Member Node.

The object identifier is the identifier used within DataONE to facilitate synchronization, and indexing. The entity
identifier as seriesId will be used to logically relate all objects of the series, and allow resolution to the latest version
via the DataONE search interface.

Any time a change is made to the mutable entity that would result in a different byte array being returned from the
MNRead.get(id) call, the Member Node MUST identify another version and create a new system metadata document
for it.

Complete requirements for handling changes are found in the update section below.

identifier
<versionIdentifier>

seriesId
<entityIdentifier>

It is worth mentioning that version identifiers cannot be reused for other content even after they are no longer in use on
the Member Node (see later sections on dealing with multiple versions).

Identifier Resolution in READ APIs

DataONE relies on Member Nodes to provide faithful access to the specific versions of entities it hosts. Specifically:

• MNRead.get(persistent identifier) MUST return either the specified version, or NotFound if it no longer has it.

• MNRead.get(persistent identifier) MUST NOT return any other version!

• MNRead.get(series identifier) MUST return the object representing the latest hosted version, or NotFound if not
recognized.

• ======> are there any other situations (deletes) to consider?

• MNRead.getSystemMetadata(persistent identifier) MUST return the system metadata of the specified version, or
NotFound if it not longer has the system metadata for that version. It SHOULD return the system metadata even
if it doesn’t have the object bytes anymore.

CNRead.resolve logic

CNRead.resolve is a centralized method to direct users to the location of the object requested, and is the primary method
for data consumers to access discovered objects. It does this in two steps:

1. if given an identifier that is a SID, determine the PID that represents the most current version.

2. return the locations of that current PID and provide an HTTP redirect of the request to the MN-
Read.get(currentPID) to one of those locations.

• ==== note to self =====> in the redirect URL, resolve should prefer replica nodes to the authoritativeMN, at
least for Mutable Member Nodes, because it lessens the chance of NotFounds.

52 Chapter 1. Contents

DataONE Operations Documentation, Release 2.0.1

• ==== note to self =====> a good reason to track the data storage model of MNs in the (CN controlled section
of) Node Properties.

Determining the current PID

• DataONE uses the obsoletes , obsoletedBy, and dateUploaded properties to determine the current version of an
entity.

• As explicit indications of ordering, obsoletes and obsoletedBy information takes priority

• dateUploaded is used to if there are two or more versions that are not obsoleted

• mutable member nodes are more prone to missing versions and obsoletedBy information, so rely heavily on the
accuracy of the dateUploaded field.

Entity Creation

When a new entity is created in a Mutable Member Node, a corresponding system metadata document must also be
created containing all of the required administrative properties of that object. This includes:

System Metadata:

identifier
a version Identifier

seriesId
the entity Identifier

checksum
the checksum of the version

size
byte-length of the version

dateUploaded
the version creation date

obsoletedBy
null

obsoletes
null, typically

Renaming Entities

Once registered, identifiers cannot be disassociated from the object originally assigned. Therefore, renaming an entity
is achieved by creating a new PID (version identifier) and SID (the new entity identifier). While this causes a duplicate
object, the duplication is acceptable. Entity renaming follows the semantics of updates, except the checksum and size
will be inherited from the previous object.

Previous System Metadata for A1:

identifier
A1

seriesId
S1

1.2. Member Nodes Resources 53

DataONE Operations Documentation, Release 2.0.1

dateUploaded
t1

checksum
C1

size
Z1

New System Metadata for A2:

identifier
A2

seriesId
S2

dateUploaded
t2 (where t2 > t1) <====== question: can t2 = t1?) ========

checksum
C1

size
Z1

obsoletes
A1

New System Metadata for A1 [if system metadata for back versions is maintained]:

identifier
A1

seriesId
S1

dateUploaded
t1

checksum
C1

size
Z1

obsoletedBy
A2

Entity Updates

An update to an entity constitutes the creation of a new version (object) related to the previous version it replaces.
If the new version overwrites the previous version without preserving the old object, the previous version is de facto
orphaned, and DataONE consumers will need to rely on any replicas created within the DatAONE network.

Previous System Metadata for A1:

identifier
A1

seriesId
S1

54 Chapter 1. Contents

DataONE Operations Documentation, Release 2.0.1

dateUploaded
t1

checksum
C1

size
Z1

dateSystemMetadataModified
t2

New System Metadata for A2:

identifier
A2

seriesId
S2

dateUploaded
t3 (where t3 > t1)

checksum
C2

size
Z2

obsoletes
A1

dateSystemMetadataModified
t4

New System Metadata for A1 [if system metdata for back versions is maintained]:

identifier
A1

seriesId
S1

dateUploaded
t1

checksum
C1

size
Z1

obsoletedBy
A2

dateSystemMetadataModified
t4

1.2. Member Nodes Resources 55

DataONE Operations Documentation, Release 2.0.1

Entity Archiving

If the repository supports archiving, it can be reflected in the entity’s system metadata, by setting the archived property
to true. The system metadata MUST remain available.

System Metadata:

archived
true

dateSystemMetadataModified
current date-time

This will be processed by DataONE as a system metadata update. Archiving an object in DataONE removes it from
the DataONE solr search index, but leaves it available for retrieval through READ APIs. The main use case is to limit
discovery of outdated content, without making the object unavailable to users already relying on the content for ongoing
analyses, or retrieval by identifier found in a publication.

Entity Unarchiving

Once the archived property is set to true, it cannot be set to false or null. <======== Question: why? =========

Therefore, to unarchive an entity, you must create a duplicate version with the same seriesId.

System Metadata:

identifier
a new version identifier

seriesId
same seriesId

dateUploaded
the version creation date

dateSystemMetadataModified
the version creation date.

Entity Deletion

Simple removal of an entity is mapped to a DataONE archive action, that is, setting the archived flag to true (see entity
archiving). Member Nodes MUST at a minimum keep the system metadata of the latest verison available for retrieval.

Entity Deletion for Legal Reasons

DataONE supports deletion of content (removal of replicas across all Member and Coordinating Nodes) for legal take-
downs of inappropriate content or over-replication.

All of these deletions are coordinated centrally by DataONE, and all Member Nodes should contact DataONE admin-
istrators to plan such events.

56 Chapter 1. Contents

DataONE Operations Documentation, Release 2.0.1

Entity Reversion

When an entity reverts back to the previous version, DataONE provides no mechanism to rearrange versions, and
Member Node administrators SHOULD NOT try to retro-fix system metadata properties to otherwise fool resolution
services. Instead a new version identifier should be generated for the version along with a new dateUploaded later than
the widthdrawn version.

This will result in possible duplication of content in the DataONE system, but this is an acceptable outcome.

System Metadata for Av1:

identifier
A1

seriesId
S1

dateUploaded
t1

checksum
C1

size
Z1

System Metadata for Av2:

identifier
A2

seriesId
S1

dateUploaded
t2

obsoletes
A1

checksum
C2

size
Z2

System Metadata for Av3:

identifier
A3

seriesId
S1

dateUploaded
t3

obsoletes
A2

checksum
C1

1.2. Member Nodes Resources 57

DataONE Operations Documentation, Release 2.0.1

size
Z1

Question What is the impact of duplicate objects on MN reporting?

Cruft

Due to the distributed nature of responsibility, and infrastructure, we require an explicit hand off of this role through
an update to the system metadata.

(immutability allows asynchrony and eventual consistency)

reflecting mutable entities as immutable objects

• read

• resolve

• create

• update

• delete

• archive

• collection management / inventory

DataONE manages the synchronization and replication of persisted, immutable versions of entities it calls objects.
Repositories that can identify and expose specific versions of their stored content as objects through DataONE Member
Node APIs can with modest effort participate as Member Nodes of DataONE - even those whose entities are mutable.

The purpose of this article is to provide a concise guide for owners of repositories of mutable content who wish to
implement the Member Node API in their application server. Before embarking on development iterations, hopeful
developers should carefully consider the cost-benefit of this approach versus other deployment options using tested
DataONE Member Node packages (described elsewhere).

By implementing the Member Node APIs, developers will need to handle more complexity, including:

1. multi-reader locking

2. implementing transactions so changes to entities are always accompanied by change to the system metadata.

3. implementing any needed change controls to satisfy object immutability requirement.

4. minimizing post-processing steps in the retrieval methods. Even standard libraries change behavior over time,
or with reconfiguration. (For example, XML formatters)

5. maintaining a storage space for DataONE SystemMetadata

6. maintaining a storage space for Resource Maps.

For systems not built for it, byte-level consistency for retrievals is a difficult thing to add after the fact. Whether it be
the need to assemble the object or apply post-processing upon retrieval, . . .

58 Chapter 1. Contents

DataONE Operations Documentation, Release 2.0.1

1.2.17 Node Registration / Update Script

Document Status

Status Comment
DRAFT (CSJ) Initial draft
REVIEWED (RN) clarified the dependency on xmlstarlet

Node Registration Script

Member Node operators will often use the CN API calls within languages such as Java and Python to register a node and
update it’s capabilities. However, this can also be done using a simple bash script that depends on curl and optionally
xmlstarlet (for friendlier display of responses) being installed on your workstation.

DataONE maintains a number of bash scripts in the d1_client_bash project, and the d1noderegister script is one of
those scripts.

To use this script to register a Member Node in a DataONE environment, copy the script into a file called d1noderegister,
and ensure that the file is executable. On Mac and Linux (Windows via Cygwin), this can be done with the following
commands:

$ curl -k -o d1noderegister \
"https://repository.dataone.org/software/cicore/trunk/itk/d1_client_bash/d1noderegister"
$ chmod +x ./d1noderegister

To see the options for the command, use the -h flag:

$./d1noderegister -h

An example of simple usage would be:

$./d1noderegister -f node.xml -b https://cn-dev.test.dataone.org/cn -E client.pem

The above command would register the MN described by the node.xml document with the DataONE development
environment, using the concatenated client SSL certificate and key issued to the MN by DataONE. See the example
node document that shows some typical Tier 1 Member Node values, using the USGSCSAS node values.

Update Node Capabilities Script

Once a node has been registered in an environment, there are times during ongoing operations that the Node information
needs to be updated. For instance, for scheduled system maintenance, a Member Node may be unavailable for a short
time, and the Node.state should be set to down to reflect the temporary outage.

To update a node using bash simple script, use the d1nodeupdate utility.

Copy the script into a file called d1nodeupdate, and ensure that the file is executable. On Mac and Linux (Windows
via Cygwin), this can be done with the following commands:

$ curl -k -o d1nodeupdate \
"https://repository.dataone.org/software/cicore/trunk/itk/d1_client_bash/d1nodeupdate"
$ chmod +x ./d1nodeupdate

To see the options for the command, use the -h flag:

1.2. Member Nodes Resources 59

http://curl.haxx.se/
http://xmlstar.sourceforge.net/
https://repository.dataone.org/software/cicore/trunk/itk/d1_client_bash/
https://repository.dataone.org/software/cicore/trunk/itk/d1_client_bash/d1noderegister
https://repository.dataone.org/documents/Projects/cicore/operations/source/member_node_deployment/example-files/node-example.xml
https://repository.dataone.org/documents/Projects/cicore/operations/source/member_node_deployment/example-files/node-example.xml
https://repository.dataone.org/software/cicore/trunk/itk/d1_client_bash/d1noderegister

DataONE Operations Documentation, Release 2.0.1

$./d1nodeupdate -h

An example of simple usage would be:

$./d1nodeupdate -f node.xml -b https://cn-dev.test.dataone.org/cn -E client.pem

The above command would update the MN described by the node.xml document with the DataONE development
environment, using the concatenated client SSL certificate and key issued to the MN by DataONE.

1.2.18 Operational Acceptance

Todo: Need to define what is required for operational acceptance.

1.2.19 Production Registration

Document Status

Status Comment
DRAFT (MBJ) Initial draft

Production registration involves deploying and registering the production Member Node that is to be operated as part
of DataONE. Registering the production node is the final technical step required for DataONE to approve the node and
for it to enter into operational status.

To register the node, you need to have a DataONE issued client certificate which identifies the Member Node to the
Coordinating Node, and then you use that certificate to register the node with DataONE. Specifically:

a. Obtain a production certificate for the Member Node

• Request from ‘support@dataone.org’

b. Install the production certificate on the production implementation of the node

c. Call the CN.register() service to register the node

d. Send an email to ‘support@dataone.org’ to request node approval and transition into operational status

1.2.20 Node Registration

Contents

• Node Registration

– Register the Administrative Contact identity

– Create the Node document

– Obtain a client side certificate

– Register the MN

– DataONE evaluates the submission

60 Chapter 1. Contents

mailto:'support@dataone.org
mailto:'support@dataone.org

DataONE Operations Documentation, Release 2.0.1

A Member Node (MN) becomes part of DataONE through Node Registration. Registering the MN allows the Coor-
dinating Nodes (CNs) to synchronize content, index metadata documents and resource maps, and replicate its content
to other MNs. Before registering the MN into the production DataONE environment, it is registered into the Staging
environment for testing.

Follow the following steps for each environment you register your node to:

1. Register the DataONE identity of the administrative contact for the new MN.

2. Create a Node document that includes the administrative contact.

3. Obtain a client certificate from DataONE for the MN.

4. Submit the Node document to DataONE using the client certificate.

5. Notify your primary DataONE contact of the registration request

DataONE then evaluates the submission. Upon approval, the registration is complete, and the MN is part of the envi-
ronment in which it was registered.

Register the Administrative Contact identity

This step must be performed by the person who will be the contact for the new MN. The contact person is often also
the administrator for the MN.

Each DataONE environment has a web-based Identity Manager where DataONE identities are created and maintained.
To create a DataONE identity, you will use the Identity Manager to authenticate with a CILogon-recognized identity,
and then attach your name and contact email. At this point, DataONE will validate this information manually.

To register the administrative contact’s DataONE identity in the target environment, perform the following steps:

1. Navigate to the Identity Manager of the target environment:

Environment Identity Manager URL
Production https://cn.dataone.org/portal
Staging https://cn-stage.test.dataone.org/portal
Sandbox https://cn-sandbox.test.dataone.org/portal
Development https://cn-dev.test.dataone.org/portal

2. Follow the prompts to authenticate against your Identity Provider. If your institution is not listed, you can use a
Google or ProtectNetwork account.

3. Once authenticated and back at the DataONE portal, supply your name and email, and then click on the Register
or Update button (only one will be present).

4. Record (copy to clipboard) the identity string shown in the ‘Logged in as’ field. This value is taken from the
CILogon certificate issued when you authenticated against your chosen Identity Provider, and is also a DataONE
subject.

5. Paste this value into the contactSubject field of the Node document you plan to submit in the next step.

6. DataONE requires that DataONE subjects that are to be used as contacts for MNs be verified. To verify the
account, send an email to support@dataone.org (launch). In the email, include the identity string obtained in the
step above and request that the account be verified. You do not need to wait for a reply to continue to the next
step.

1.2. Member Nodes Resources 61

https://cn.dataone.org/portal
https://cn-stage.test.dataone.org/portal
https://cn-sandbox.test.dataone.org/portal
https://cn-dev.test.dataone.org/portal
mailto:support@dataone.org
mailto:support@dataone.org?subject=User%20Account%20Verification%20Request&body=The%20subject%20string:%20\T1\textless {}paste%20here\T1\textgreater {}%0A%0Dtarget%20environment:%20\T1\textless {}paste%20environment%20here\T1\textgreater {}%0A%0D(please%20cc:%20your%20DataONE%20contact%20if%20in%20a%20test%20environment)

DataONE Operations Documentation, Release 2.0.1

Create the Node document

The Node document is a set of values that describe a MN or CN, its internet location, and the services it supports.

The values in the Node document are described in the Node document section in the architecture documentation.

What follows is an overview of only the required values in the Node document. Also see the example node document.

• identifier: A unique identifier for the node of the form urn:node:NODEID where NODEID is the node specific
identifier. This value MUST NOT change for future implementations of the same node, whereas the baseURL
may change in the future.

NODEID is typically a short name or acronym. As the identifier must be unique, coordinate with your DataONE
developer contact to establish your test and production identifiers. The conventions for these are urn:node:
mnTestNODEID for the development, sandbox and staging environments and urn:node:NODEID for the produc-
tion environment. For reference, see the list of current DataONE Nodes.

E.g.: urn:node:USGSCSAS (for production) and urn:node:TestUSGSCSAS (for testing).

• name: A human readable name of the Node. This name can be used as a label in many systems to represent the
node, and thus should be short, but understandable.

E.g.: USGS Core Sciences Clearinghouse

• description: Description of a Node, explaining the community it serves and other relevant information about
the node, such as what content is maintained by this node and any other free style notes.

E.g.: US Geological Survey Core Science Metadata Clearinghouse archives metadata records describing datasets
largely focused on wildlife biology, ecology, environmental science, temperature, geospatial data layers docu-
menting land cover and stewardship (ownership and management), and more.

• baseURL: The base URL of the node, indicating the protocol, fully qualified domain name, and path to the
implementing service, excluding the version of the API.

E.g.: https://server.example.edu/app/d1/mn

• contactSubject: The appropriate person or group to contact regarding the disposition, management, and status
of this Member Node. The contactSubject is an X.509 Distinguished Name for a person or group that can be used
to look up current contact details (e.g., name, email address) for the contact in the DataONE Identity service.
DataONE uses the contactSubject to provide notices of interest to DataONE nodes, including information such
as policy changes, maintenance updates, node outage notifications, among other information useful for adminis-
tering a node. Each node that is registered with DataONE must provide at least one contactSubject that has been
verified with DataONE.

The contactSubject must be the subject of the DataONE identity that was created in the previous step.

E.g.: ‘CN=My Name,O=Google,C=US,DC=cilogon,DC=org’

• replicate: Set to true if the node is willing to be a replication target, otherwise false.

This setting is ignored if the Tier of the node is lower than 4. It is intended for temporarily disabling replication.
For permanently disabling replication, set TIER lower than 4 as well as this setting to False.

• synchronize: Set to true if the node should be synchronized by a CN, otherwise false.

• type: The type of the node. For MNs, set to mn.

• state: The state of the node.

Set to ‘up’ when the Node is running correctly. Set to ‘down’ when it is down for maintenance or an unscheduled
outage. See the documentation on the CNRegister.updateNodeCapabilities() API call for details.

62 Chapter 1. Contents

http://mule1.dataone.org/ArchitectureDocs-current/apis/Types.html#Types.Node
https://repository.dataone.org/documents/Projects/cicore/operations/source/member_node_deployment/example-files/node-example.xml
http://mule1.dataone.org/OperationDocs/membernodes.html
http://mule1.dataone.org/ArchitectureDocs-current/apis/CN_APIs.html#CNRegister.updateNodeCapabilities

DataONE Operations Documentation, Release 2.0.1

Obtain a client side certificate

DataONE will create and issue your node an X.509 certificate issued by the DataONE CA. This client side certificate
is to be used when the MN initiates REST API calls to CNs and other MNs. Certificates issued by DataONE are
long-lasting X.509 certificates linked to a specific MN via its DN .

Tier 1 MNs using http for MN API calls will likely only need this certificate when administering their node using the
CNRegister API calls, which may be done from any client machine. Nevertheless, it is advisable to store this certificate
on the Member Node server.

To obtain a client side certificate:

1. create an account on the DataONE Registration page,

2. notify DataONE by sending an email to support@dataone.org. In the email, state that you are requesting a client
side certificate for a new MN and include the MN identifier, in the form urn:node:NODEID, selected previously.

DataONE will create the certificate for you and notify you of its creation with reply to your email. At this point:

1. follow the link provided in the email, and sign in using the account created or used in the first step, above.

You will initially receive a certificate that is valid for any and all of the test environments. When the new MN is ready
to go into production, you will receive a production certificate.

Warning: Anyone who has the private key can act as your Node in the DataONE infrastructure. Keep the private
key safe. If your private key becomes compromised, please inform DataONE so that the certificate can be revoked
and a new one generated.

Register the MN

The MN registration procedure is designed to be automatable in MN implementations and is automated in Metacat and
GMN . For MN implementations that do not automate this step, DataONE also provides a simple script to perform this
step. Registering the MN is done by calling the CNRegister.register() API. The call essentially submits the previously
created Node document to DataONE in a HTTP POST request over a TLS/SSL connection that has been authenticated
with the previously obtained certificate.

After running the script or running an automated registration, the Member Node should email support@dataone.org to
notify of the registration request, and notify their primary technical contact at DataONE.

DataONE evaluates the submission

DataONE evaluates the submitted Node document and contacts the person listed as contactSubject in the Node doc-
ument by email with the outcome of the approval process. After the node has been approved, the MN is part of the
infrastructure environment in which it has been registered, and the CNs in that environment will start processing the
information on the node.

1.2. Member Nodes Resources 63

https://docs.dataone.org/join_form
mailto:support@dataone.org
http://mule1.dataone.org/OperationDocs/member_node_deployment/node-registration-update-script.html
http://mule1.dataone.org/ArchitectureDocs-current/apis/CN_APIs.html#CNRegister.register
mailto:support@dataone.org

DataONE Operations Documentation, Release 2.0.1

1.2.21 Select the DataONE Tier

While Member Nodes share the same baseline-implementation-requirements of managing their object collections, se-
lecting a Tier level for implementation is a matter of deciding how much of the DataONE Member Node API your
organization is ready to implement. DataONE has defined several tiers, each of which designates a certain level of
functionality exposed through the MN API. The tiers enable MN developers to implement only the methods for the
level at which they wish to participate in the DataONE infrastructure.

Each tier implicitly includes all lower numbered tiers. For instance, a Tier 3 MN must implement tiers 1, 2 and 3
methods.

The tiers range from a simple, public, read only MN, to a fully implemented, writable MN that enables replica storage
for other MNs.

The DataONE MN APIs are defined in groups that correspond to the tiers.

The tiers are as follows:

• Tier 1: Read, public objects (MNCore and MNRead APIs)

Provides read-only access to publicly available objects (Science Data, science metadata, and Resource Maps),
along with core system API calls for monitoring and logging.

• Tier 2: Access control (MNAuthentication API)

Allows the access to objects to be controlled via access control list (ACL) based authorization and certificate-
based authentication.

• Tier 3: Write (MNStorage API)

Provides write access (create, update and archive objects).

Allows using DataONE interfaces to create and maintain objects on the MN.

• Tier 4: Replication target (MNReplication API)

Allows the DataONE infrastructure to use available storage space on the MN for storing copies of objects that
originate on other MNs, based on the Node Replication Policy.

Note: Support for the Node Replication Policy used by Tier 4 MNs is currently under development on the Coordinating
Nodes and a Tier 4 MN may currently receive requests to replicate content which should be blocked by its Node
Replication Policy.

Note: MN developers may choose to implement the tiers in separate phases. For instance, a MN can initially be
implemented and deployed as a Tier 1 MN and operated as such while higher tiers are implemented.

Despite the Tier level, content maintained (created, updated, archived) outside of the DataONE API (but represented
through it) is expected to conform to DataONE requirements.

64 Chapter 1. Contents

http://mule1.dataone.org/ArchitectureDocs-current/apis/MN_APIs.html
http://mule1.dataone.org/ArchitectureDocs-current/apis/Types.html#Types.NodeReplicationPolicy

DataONE Operations Documentation, Release 2.0.1

1.2.22 Establish Testing Environment

Document Status

Status Comment
DRAFT (MBJ) Initial draft

A testing environment consists of a test Member Node (MN) installation on either a physical or virtual machine. This
MN software can optionally be registered in a DataONE testing environment in order to emulate the real-world pro-
duction scenario. In the early phases of development, registering a Member Node in a dataONE environment
isn’t required. Rather, the MN operator can use the Member Node Check service to test their implementation. This
testing service will make calls to all of the expected API endpoints on the MN for each Tier, and will report on success,
failures, or warnings. This service can check against multiple versions of the API, so operators should choose tests for
the version they are targeting (likely the most recent).

DataONE provides multiple deployment environments that emulate the production environment. An ‘environment’,
per se, is a set of Coordinating Nodes (CNs) communicating with each other, and a set of Member Nodes (MNs) that
are registered with those Coordinating Nodes. They communicate with the CNs, and potentially with other MNs if
replication is enabled.

Once a strategy has been chosen for a technical implementation, Member Node operators should establish a test server
environment (either physical or virtual machines), preferably separate from the server or servers to be used in the pro-
duction environment. For those choosing existing software stacks, this means installing the operating system, all of the
prerequisite software, and then installing the DataONE-enabled repository software itself. Our reference implemen-
tations have been built using Ubuntu Linux 10.04 LTS, and we will be migrating to Ubuntu 12.04 LTS. With a test
server established, operators can make use of one of three development environments used for registering and testing
the Member Node functionality. These are:

1) The Dev environment: Contains up to 3 Coordinating Nodes and multiple internal testing Mebmer Node deploy-
ments. This is the most unstable of all of the environments, and is good for early Member Node development
work.

2) The Sandbox environment: Contains up to 3 Coordinating Nodes and multiple Member Node deployments. It is
used for testing new features in a more stable environment than Dev.

3) The Staging environment: Contains up to 3 Coordinating Nodes and a multiple Member Node deployments
from partner institutions. The deployed software is identical to the production environment, but still contains
test content.

There are a couple prerequisites to register your test Member Node with one of these environments:

1) Sign into the environment as the Member Node operator. Only ‘verified’ accounts are able to register nodes
with the Coordinating Nodes, and the first step is to sign in and register your name and email. This can be
done in each environment (including production), by visiting the /portal endpoint for the environment. For
instance, in the staging environment, visit https://cn-stage.test.dataone.org/portal and begin the login form. This
will redirect you to the CILogon service, which prompts you to authenticate against your ‘Identity Provider’. If
your institution isn’t listed, you can use a Google or ProtectNetwork account. Once authenticated, you will be
returned to the DataONE portal to fill in your name and email. Once registered, you will see the Distinguished
Name assigned to you from the CILogon service. This DN is used in the contactSubject field of your Member
Node document used to register your Node. At this point you can contact the DataONE developer you’re working
with, or support@dataone.org, to have the verified flag set on your account.

2) Obtain DataONE client SSL certificates. Cient-side SSL certificates are used to identify users and nodes.
Nodes are issued a long-lasting X.509 certificate with the Node.subject embedded in it. Send an email to your
DataONE developer contact, or to support@dataone.org, to request your certificates. Tier 1 Member Nodes will
only need the certificate when calling the CN during MNRegister calls, and other select calls like CNRepli-

1.2. Member Nodes Resources 65

http://mncheck.test.dataone.org:8080
../environments.html
https://cn-dev.test.dataone.org/cn
https://cn-sandbox.test.dataone.org/cn
https://cn-stage.test.dataone.org/cn
https://cn-stage.test.dataone.org/portal
http://mule1.dataone.org/ArchitectureDocs-current/apis/Types.html#Types.Node
mailto:support@dataone.org
http://mule1.dataone.org/ArchitectureDocs-current/apis/Types.html#Types.Person.verified
mailto:support@dataone.org

DataONE Operations Documentation, Release 2.0.1

cation.isNodeAuthorized(). Tier 2 and higher nodes will use this certificate identity during all of the service
calls.

3) Construct a Node document to be registered. To register your node in a test environment, you POST an
XML Node document to the /node REST endpoint. The field values in this document affect both programmatic
Node communication, as well as graphical interfaces used by scientists to understand what your Member Node
represents. Some details are:

• identifier: The node identifier matches the pattern urn:node:XXXXX where XXXXX is a short string represent-
ing your repository. Coordinate with your DataONE developer contact on establishing your test identifier and
your production identifier. As an example, the Dryad Data Repository uses a test identifier of urn:node:
mnTestDRYAD, and a production identifier of urn:node:DRYAD.

• name: The node name is visible in graphical interfaces, so should be short, but should represent the repository. A
good example is the USGS Core Sciences Clearinghouse. It corresponds with an identifier of urn:node:
USGSCSAS, and a description of US Geological Survey Core Science Metadata Clearinghouse
archives metadata records describing datasets largely focused on wildlife biology,
ecology, environmental science, temperature, geospatial data layers documenting land
cover and stewardship (ownership and management), and more.

• description: The node description gives more details than the name. See above.

• subject: The node subject is the Distinguished Name that represents the Node. This subject must match the
Subject listed in the DataONE client SSL certificate used for authentication and authorization of all Node-level
operations. This DN follows the pattern ‘CN=urn:node:XXXXX,DC=dataone,DC=org’, where the common
name portion of the DN matches the identifier of the node.

• state: Member Nodes should keep their registered Node document up to date in the production environment. For
example, if the Node is running correctly, the state is ‘up’, but when it is down for maintenance or an unscheduled
outage, the state should be set to ‘down’. See the documentation on the CNregister.updateNodeCapabilities() API
call for details.

There are other required and optional fields in the Node document, but the list above mentions fields that are particularly
notable.

4) Register the Node: Finally, POST the XML Node document to the /node REST endpoint for the given environ-
ment. See the details in the CNRegister.register() API call. You must send your DataONE client SSL certificate
with the request for authentication.

1.2.23 Establish a test system

Document Status

Status Comment
DRAFT (MBJ) Initial draft
DRAFT (Dahl)

Once a strategy has been chosen for a technical implementation, Member Node developers should establish a test
server. A test server is a physical or virtual machine that runs the MN software that is under development and that can
be reached from the Internet.

For those choosing existing software stacks, this means installing the operating system, all of the prerequisite software,
and then installing the DataONE-enabled repository software itself. Our reference implementations have been built
using Ubuntu Linux 10.04 LTS, and we will be migrating to Ubuntu 12.04 LTS.

In the early phases of development, when the new MN is not yet ready for general testing, MN developers will typically
need to perform basic compliance testing of specific REST APIs that they are currently implementing. For this purpose,

66 Chapter 1. Contents

http://mule1.dataone.org/ArchitectureDocs-current/apis/Types.html#Types.Node
http://mule1.dataone.org/ArchitectureDocs-current/apis/CN_APIs.html#CNRegister.updateNodeCapabilities
http://mule1.dataone.org/ArchitectureDocs-current/apis/CN_APIs.html#CNRegister.register

DataONE Operations Documentation, Release 2.0.1

DataONE provides the Member Node Check service. The service performs a series of calls to the REST API endpoints
that a MN of a given tier must support. It then analyses the responses from the MN and provides a compliance report
for each of the APIs. The Member Node Check service can run tests against any server that can be reached from the
Internet.

1.2.24 Other Documents and Resources

• Member Node issue tracker

• Redmine Wiki

• GitHub MN info tools

• GitHub MN ticket tools

• Past MN deployment docs

1.3 Coordinating Nodes

Figure 1. Typical setup of Coordinating Nodes in an environment. The primary CN is the CN with the environment
DNS entry pointing to it. The primary CN must have d1-processing running on it. The indexing CN is the CN
that has both d1-index-task-generator and d1-index-task-processor running on it. The indexing CN may
also be the primary CN. All CNs in an environment have ldap, postgres, apache, zookeeper, solr, and tomcat7
running on them.

1.3.1 Enter / Exit Read Only Mode

Putting a DataONE envrionment in read only mode is achieved by turning off the d1-processing service which should
be running only on the primary CN.

Synopsis

To shutdown d1-processing:

1. Set the service control properties to FALSE on the primary CN

2. Check that batch processing has completed

3. Shutdown the da-processing service

To startup d1-processing:

1. Set the service control properties to TRUE

2. Start the d1-processing service on the primary CN

1.3. Coordinating Nodes 67

http://mncheck.test.dataone.org:8080
https://redmine.dataone.org/projects/mns
https://redmine.dataone.org/projects/mns/wiki
https://github.com/DataONEorg/member-node-info
https://github.com/DataONEorg/redmine_tools
http://jenkins-1.dataone.org/jenkins/job/DataONE-Operations-Manual/ws/operations/_build/html/member_node_deployment/

DataONE Operations Documentation, Release 2.0.1

Entering read only mode

d1-processing is responsible for synchronization, replication, and log aggregation. Each of these processes in-
volves long-running batches of work where uncontrolled disruption of the batch may leave work in an incomplete state.
d1-processing monitors service control properties and will initiate orderly shutdown of services when the value of
the property changes to FALSE. Hence, d1-processing should always be shut down in a controlled manner by toggling
the value of the service control properties.

d1-processing monitors three property files, one for each of synchronization, replication, and log aggregation. The
property files are located under /etc/dataone/process.

Process Property File Service Control Property
Synchronization synchronization.properties Synchronization.active
Replication replication.properties Replication.active
Log Aggregation logAggregation.properties LogAggregator.active

In each case, the valid values for the service control property are TRUE or FALSE, with FALSE indicating the service
should shut itself down if running and not start when the d1-processing service starts up.

The value of the property can be set by directly editing the properties file or through a utility that can toggle the values.
On the CNs, the script /usr/local/bin/d1processingstate will report and set the value of the service control
property for each of the three services:

$ d1processingstate
Synchronization.active=TRUE
Replication.active=TRUE
LogAggregator.active=TRUE

$ sudo d1processingstate FALSE
Previous: Synchronization.active=TRUE
New: Synchronization.active=FALSE
Previous: Replication.active=TRUE
New: Replication.active=FALSE
Previous: LogAggregator.active=TRUE
New: LogAggregator.active=FALSE

A fabric script to toggle service values is also available for remotely setting the service control property values:

d1cnprocessingstate -S FALSE -H cn-orc-1.dataone.org

After setting the service control properties to FALSE, it may take some time for services to shutdown before the
d1-processing service can be shutdown.

The state of the services can be determined by watching the respective service logs.

Process Log File
Synchronization /var/log/dataone/synchronize/cn-synchronization.log
Replication /var/log/dataone/replicate/cn-replication.log
Log Aggregation /var/log/dataone/logAggregate/cn-aggregation.log

The cn-synchronization.log will emit a message like:

[WARN] 2018-07-02 11:51:10,000 [SynchronizationQuartzScheduler_Worker-21] ␣
→˓(MemberNodeHarvestJob:execute:75) null- ObjectListHarvestTask Disabled

(continues on next page)

68 Chapter 1. Contents

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

[WARN] 2018-07-02 11:51:47,982 [SynchronizationQuartzScheduler_Worker-20] ␣
→˓(SyncMetricLogJob:execute:50) SyncMetricLogJob Disabled

When satisfied that d1-processing activity has completed, the service may be stopped:

sudo service d1-processing stop

Exiting read only mode

Exiting read only mode requires ensuring that the service control properties are set to TRUE then starting the
d1-processing service:

$ sudo d1processingstate TRUE
Previous: Synchronization.active=FALSE
New: Synchronization.active=TRUE
Previous: Replication.active=FALSE
New: Replication.active=TRUE
Previous: LogAggregator.active=FALSE
New: LogAggregator.active=TRUE

$ sudo service d1-processing start

1.3.2 Restarting Services

d1-processing

d1-index-task-generator

d1-index-task-processor

tomcat7

solr and zookeeper

apache

postgres

slapd

1.3.3 System Restart

A kernel upgrade on a Coordinating Node requires a system restart. Restarting a CN requires that the environment
is placed in read-only mode to help avoid content inconsistency between the CNs operating within an Environment.
Restarting the Primary CN in an Environment requires that the Environment DNS be switched to another CN so the
read only service (resolution, retrieval, and search) remain available to clients. The DNS switch is required in the
production environment and is optional in the various test environments.

1.3. Coordinating Nodes 69

DataONE Operations Documentation, Release 2.0.1

Figure 1. Typical setup of Coordinating Nodes in an environment. When restarting CN-1 it is necessary to change
the Environment DNS to point to one of the other nodes so that operations such resolve and external applications (e.g.
Search UI) continue to function.

Procedure
1. Broadcast notification

2. Set read-only mode

3. Update non-primary nodes (Indexing CN and Third CN), avoiding an update of DataONE packages:

#optional hold on DataONE packages
sudo apt-mark hold dataone*
sudo apt-get update
sudo apt-get dist-upgrade
#when ready, restart the server
sudo reboot

#undo hold on DataONE packages
sudo apt-mark unhold dataone*
verify new kernel running
uname -r

4. Switch DNS to a non-primary node. For example, switch the environment DNS entry to point to the Indexing
CN.

5. Update the remaining node. As for #4.

6. Switch DNS back to the original primary node.

7. Leave read-only mode

8. Broadcast notification

1.3.4 Reindexing Content

$ cd /usr/share/dataone-cn-index/
$ sudo java -jar d1_index_build_tool.jar -h
DataONE solr index build tool help:

This tool indexes objects the CN's system metadata map.
Nothing is removed from the solr index, just added/updated.

Please stop the d1-index-task-processor while this tool runs:
/etc/init.d/d1-index-task-processor stop

And restart when the tool finishes:
/etc/init.d/d1-index-task-processor start

-d System data modified date to begin index build/refresh from.
Data objects modified/added after this date will be indexed.
Date format: mm/dd/yyyy.

-a Build/refresh all data objects regardless of modified date.

-c Build/refresh a number data objects, the number configured by this option.
(continues on next page)

70 Chapter 1. Contents

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

This option is primarily intended for testing purposes.

-pidFile Refresh index document for pids contained in the file path
supplied with this option. File should contain one pid per line.

-migrate Build/refresh data object into the next search index
version's core - as configured in:
/etc/dataone/solr-next.properties

Exactly one option amoung -d or -a or -pidFile must be specified.

So, I usually create a pid list using MN.listObjects(), save it to, say, /tmp/pids.txt,␣
→˓and then use:

sudo java -jar d1_index_build_tool.jar -pidFile/tmp/pids.txt

(notice the no space between the pidFile option and the path argument).

1.3.5 Approving a Member Node

Approving a Member Node involves setting the d1NodeApproved property for the node entry in LDAP and trig-
gering a refresh of the node list in d1-processing so that the new node is subsequently processed for synchro-
nization, log-aggregation and replication. Updating LDAP alone will not trigger a refresh of the node list. The
dataone-approve-node tool will update the entry and trigger the node list refresh.

Procedure

The approval process is performed after the MN has registered in the environment.

To approve a MN:

1. ssh to a Coordinating Node in the environment.

2. run sudo /usr/local/bin/dataone-approve-node

3. Answer the questions, e.g.:

Choose the number of the Certificate to use
0) urn:node:cnStageUCSB1.pem
1) urn_node_cnStageUCSB1.pem
0

Pending Nodes to Approve
0) urn:node:mnStageORC1 1) urn:node:mnStageLTER 2) urn:node:mnStageCDL 3) urn:node:
→˓USGSCSAS
4) urn:node:ORNLDAAC 5) urn:node:mnTestTFRI 6) urn:node:mnTestUSANPN 7) urn:node:
→˓TestKUBI
8) urn:node:EDACGSTORE 9) urn:node:mnTestDRYAD 10) urn:node:DRYAD 11) urn:node:
→˓mnTestGLEON
12) urn:node:mnDemo11 13) urn:node:mnTestEDORA 14) urn:node:mnTestRGD 15) urn:
→˓node:mnTestIOE
16) urn:node:mnTestNRDC 17) urn:node:mnTestNRDC1 18) urn:node:mnTestPPBIO 19) urn:
→˓node:mnTestUIC

(continues on next page)

1.3. Coordinating Nodes 71

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

20) urn:node:mnTestFEMC 21) urn:node:IEDA_MGDL
Type the number of the Node to verify and press enter (return):
21

Do you wish to approve urn:node:IEDA_MGDL (Y=yes,N=no,C=cancel)
Y

Node Approved in LDAP
Hazelcast Node Topic published to. Approval Complete

There may be an ERROR message complaining of “No certificate installed in expected location:
/tmp/x509up_u0”. This can be safely ignored.

Sources

See: https://repository.dataone.org/software/cicore/trunk/cn/d1_cn_tools/d1_cn_approve_node/

1.3.6 Upgrade and Configuration

Metacat Upgrade

After upgrading Metacat, it is necessary to visit:

https://node name/metacat/admin

and configure metacat for operation. The defaults should be preserved from previous setup.

Upgrading the Search UI

![Search UI screenshot](images/metacatui-dataone-1000w.png)

Updating the Search UI The production Search UI, search.dataone.org, is hosted on two machines, and all need to
be upgraded individually:

• search-ucsb-1.dataone.org

• search-orc-1.dataone.org

For the DataONE test environments, all Search UIs are hosted on a single machine: - search.test.dataone.org

This machine is configured to host the following virtual hosts: - search-dev.test.dataone.org - search-
dev-2.test.dataone.org - search-sandbox.test.dataone.org - search-sandbox-2.test.dataone.org - search-
stage.test.dataone.org - search-stage-2.test.dataone.org

When upgrading the SearchUI software for each environment, it will be installed in the appropriate DocumentRoot
configured for the virtual host.

Upgrade steps - Scripted upgrade

1. Clone the metacatui-config repository to your home directory on the Search UI machine

`bash git clone https://github.nceas.ucsb.edu/walker/metacatui-config.git `

2. In the scripts directory, run the upgrade script

For production: Run the upgrade.sh script and send the MetacatUI version via the -v flag and the
deployment name (dataone) via the -d flag.

`bash cd metacatui-config/scripts/ bash upgrade.sh -v 2.12.0 -d dataone `

72 Chapter 1. Contents

https://repository.dataone.org/software/cicore/trunk/cn/d1_cn_tools/d1_cn_approve_node/
https://node

DataONE Operations Documentation, Release 2.0.1

For development environments: Run the upgrade-test-dataone.sh script and send the MetacatUI
version via the -v flag. This script upgrades all of the test DataONE search UIs.

`bash cd metacatui-config/scripts bash upgrade-test-dataone.sh -v 2.12.0 `

Upgrade steps - Manual upgrade

1. Download the latest version of MetacatUI from https://github.com/NCEAS/metacatui/releases

```bash
wget https://github.com/NCEAS/metacatui/archive/metacatui-2.12.0.zip ```

2. Unpack the .zip or .tar.gz file

`bash unzip metacatui-2.12.0.zip `

3. Backup the currently-installed Search UI files

`bash cp -rf /var/www/search.dataone.org . `

4. Open the ` metacatui-2.12.0/src/index.html` file in a text editor and change the appConfigPath variable towards
the beginning of the HTML file to match the location where the DataONE MetacatUI theme config file will be
deployed.

##### Production Config

For production, this will be in the themes directory included in MetacatUI:

<script type=”text/javascript”>
// The path to your configuration file for MetacatUI. This can be any web-accessible
location. var appConfigPath = “/js/themes/dataone/config.js”;

</script> . . . ```
##### Development Config

Config files for development environments are not released in the MetacatUI repository, but instead
are maintained in a separate metacatui-config repository here: https://github.nceas.ucsb.edu/walker/
metacatui-config

Each CN development environment will have a config file in that repository. Download the corre-
sponding config file and deploy to the DocumentRoot configured for the virtual host. Set the appCon-
figPath to that root path:

<script type=”text/javascript”>
// The path to your configuration file for MetacatUI. This can be any web-accessible
location. var appConfigPath = “/config.js”;

</script> . . . ```
See the MetacatUI documentation for more detailed instructions and for customization options: https:
//nceas.github.io/metacatui/

5. Move the new search UI files to the root directory where web files are served.

`bash cp -rf metacatui-2.12.0/src/* /var/www/search.dataone.org/ `

## Installing a new Search UI 1. Set up a VM and configure Apache to serve web files from a directory in /var/www/.
Follow steps 1-5 above to install MetacatUI in the /var/www/ directory.

2. Add the FallbackResource Apache directive and allow encoded slashes:

```apache . . . # Serve index.html instead of a 404 error in the MetacatUI directory <Directory
“/var/www/search.dataone.org”>

FallbackResource /index.html

1.3. Coordinating Nodes 73

https://github.com/NCEAS/metacatui/releases
https://github.com/NCEAS/metacatui/archive/metacatui-2.12.0.zip
https://github.nceas.ucsb.edu/walker/metacatui-config
https://github.nceas.ucsb.edu/walker/metacatui-config
https://nceas.github.io/metacatui/
https://nceas.github.io/metacatui/

DataONE Operations Documentation, Release 2.0.1

</Directory>

Allow encoded slashes in URLs so encoded identifiers can be sent in MetacatUI URLs AllowEn-
codedSlashes On . . . ```

See the MetacatUI Apache configuration documentation for further details: https://nceas.github.io/metacatui/install/
apache.html

3. If having issues with CORS requests to the CN, configure Apache to proxy requests to DataONE CN API calls.
Add the following Apache directives:

`apache SSLProxyEngine on ProxyPass "/cn/v2/" "https://cn.dataone.org/cn/v2/
" ProxyPassReverse "/cn/v2/" "https://cn.dataone.org/cn/v2/" `

Enable these Apache mods: `bash a2enmod proxy_http a2enmod proxy `

1.3.7 Certificates

Todo: add general certificate information

Client Certificate

Todo: add client cert info

Server Certificate

See also [[Connectivity and Certificates|CN_connectivity]]

Install Certbot

Install the cerbot tool to generate LetsEncrypt certificates.

See [[LetsEncrypt]] for installation details.

Adjust node.properties

Two additional properites need to be added to /etc/dataone/node.properties:

Key Description
environment.hosts Space delimited list of host names for CNs participating in the environment
cn.rsyncuser Username of account to use when syncing content across CNs.

For example, on cn-stage-ucsb-1.test.dataone.org:

environment.hosts=cn-stage-ucsb-1.test.dataone.org cn-stage-unm-1.test.dataone.org cn-
→˓stage-orc-1.test.dataone.org
cn.rsyncuser=rsync_user

74 Chapter 1. Contents

https://nceas.github.io/metacatui/install/apache.html
https://nceas.github.io/metacatui/install/apache.html

DataONE Operations Documentation, Release 2.0.1

Create Account for rsyncuser

sudo adduser ${RUSER} --disabled-password
sudo su - ${RUSER}
mkdir .ssh
chmod 0700 .ssh
cd .ssh
ssh-keygen -N "" -f id_rsa
cp id_rsa.pub authorized_keys
chmod 0600 *
cd ~
mkdir bin
nano bin/rsync-wrapper.sh
...

chmod u+x bin/rsync-wrapper.sh

rsync-wrapper.sh:

#!/bin/bash

LOG="/home/rsync_user/actions.log"
echo "$(date) " $@ >> ${LOG}
/usr/bin/sudo /usr/bin/rsync $@

Prepare for Verification

Before running the certificate generation command it is necessary to create the working folder that will be used for the
verifications. Do the following on each CN:

PROPERTIES="/etc/dataone/node.properties"
RSUSER=$(grep "^cn.rsyncuser=" ${PROPERTIES} | cut -d'=' -f2)
sudo mkdir -p /var/www/.well-known/acme-challenge
sudo chown -R ${RSUSER}:${RSUSER} /var/www/.well-known/acme-challenge
sudo setfacl -Rdm g:${RSUSER}:rw /var/www/.well-known/acme-challenge/
sudo chmod g+s /var/www/.well-known/acme-challenge/

Apache must be configured to not redirect the verification address in the .well-known folder. The following exam-
ple is for cn-stage-ucsb-1.test.dataone.org. Adjust ServerName, ServerAlias, and RedirectMatch with
appropriate values for the respective environment and host:

<VirtualHost *:80>
###
This config only comes into play when DNS for cn-stage.test.dataone.org
is pointing to this server
###
ServerName cn.dataone.org
ServerAlias cn-stage-ucsb-1.dataone.org
ServerAdmin administrator@dataone.org
DocumentRoot /var/www/
ErrorLog ${APACHE_LOG_DIR}/error.log
CustomLog ${APACHE_LOG_DIR}/access.log combined

(continues on next page)

1.3. Coordinating Nodes 75

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

Redirect all traffic except certbot to HTTPS
RedirectMatch ^/(?!.well-known)(.*) https://cn-stage.test.dataone.org/$1

</VirtualHost>

Supporting Scripts

The certificate generation process relies on the following authentication and cleanup hooks to copy verification infor-
mation to other nodes participating in the environment and to cleanup afterwards.

/etc/letsencrypt/renewal/manual-auth-hook.sh:

#!/bin/bash
PROPERTIES="/etc/dataone/node.properties"
RSUSER=$(grep "^cn.rsyncuser=" ${PROPERTIES} | cut -d'=' -f2)
HOSTS=$(grep "^environment.hosts=" ${PROPERTIES} | cut -d'=' -f2)
THIS_HOST=$(hostname -f)
FNVALID="/var/www/.well-known/acme-challenge/$CERTBOT_TOKEN"
CREDS="/home/${RSUSER}/.ssh/id_rsa"
echo $CERTBOT_VALIDATION > ${FNVALID}
for TARGET_HOST in ${HOSTS}; do
if ["${TARGET_HOST}" != "${THIS_HOST}"]; then

echo "Copying verification to ${TARGET_HOST}"
scp -i ${CREDS} ${FNVALID} ${RSUSER}@${TARGET_HOST}:${FNVALID}

fi
done

/etc/letsencrypt/renewal/manual-cleanup-hook.sh:

#!/bin/bash
PROPERTIES="/etc/dataone/node.properties"
RSUSER=$(grep "^cn.rsyncuser=" ${PROPERTIES} | cut -d'=' -f2)
HOSTS=$(grep "^environment.hosts=" ${PROPERTIES} | cut -d'=' -f2)
THIS_HOST=$(hostname -f)
FNVALID="/var/www/.well-known/acme-challenge/$CERTBOT_TOKEN"
CREDS="/home/${RSUSER}/.ssh/id_rsa"
rm ${FNVALID}
for TARGET_HOST in ${HOSTS}; do
if ["${TARGET_HOST}" != "${THIS_HOST}"]; then

echo "Removing verification from ${TARGET_HOST}"
ssh -i ${CREDS} ${RSUSER}@${TARGET_HOST} "rm ${FNVALID}"

fi
done

After a certificate is renewed, it is necessary to notify administrators that some action is required. Place the following
notify-administrators.sh in the renew-hook.d folder. Any scripts in that folder will be called on a successful certificate
renewal.

#!/bin/bash
PROPERTIES="/etc/dataone/node.properties"
THIS_HOST=$(hostname -f)
THIS_ENVIRONMENT=$(grep "^cn.router.hostname=" ${PROPERTIES} | cut -d'=' -f2)
ADMIN="administrator@dataone.org"

(continues on next page)

76 Chapter 1. Contents

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

cat <<EOF | mail -s "Certificate Renewal on ${THIS_ENVIRONMENT}" ${ADMIN}
Hi!
certbot running on ${THIS_HOST} has generated a new server certificate for the
${THIS_ENVIRONMENT} environment.

Some manual steps must be taken to complete the installation of the new
certificate. The process for this is documented at:

https://github.com/DataONEorg/DataONE_Operations/wiki/LetsEncrypt-CNs

but basically entails running:

/etc/letsencrypt/renewal/post-cn-cert-renew.sh

then restarting services on each CN in the ${THIS_ENVIRONMENT} environment.

cheers
EOF

Account for Synchronization

• Create account, disable password

• Create ssh keys

• Distribute ssh public keys

• Verify ssh to other hosts

• Enable rsync for account

Certificate Generation

The server certificate must have a primary subject of the primary CN name and must also include as subject al-
ternative names the host names of each CN participating in the environment. For example, the stage environment
would include: cn-stage.test.dataone.org, cn-stage-ucsb-1.test.dataone.org, cn-stage-orc-1.
test.dataone.org, and cn-stage-unm-1.test.dataone.org.

Certificate generation is performed by certbot with the following command run on the primary host only (remove the
--dry-run parameter to do an actual request):

PROPERTIES="/etc/dataone/node.properties"
HOSTS=$(grep "^environment.hosts=" ${PROPERTIES} | cut -d'=' -f2)
THIS_ENVIRONMENT=$(grep "^cn.router.hostname=" ${PROPERTIES} | cut -d'=' -f2)
DOMAINS="-d ${THIS_ENVIRONMENT}"
for DHOST in ${HOSTS}; do DOMAINS="${DOMAINS} -d ${DHOST}"; done

sudo certbot certonly --dry-run --manual \
--preferred-challenges=http \
--manual-auth-hook=/etc/letsencrypt/renewal/manual-auth-hook.sh \
--manual-cleanup-hook=/etc/letsencrypt/renewal/manual-cleanup-hook.sh \
--cert-name ${THIS_ENVIRONMENT} ${DOMAINS}

1.3. Coordinating Nodes 77

DataONE Operations Documentation, Release 2.0.1

After a successful first time certificate generation, is is necessary to configure various services to use the new certificates.
This procedure should only need to be done once.

Adjust Apache Configuration

Apache HTTPS configuration is straight forward:

<VirtualHost *:443>
ServerName cn.dataone.org
Change the following for the respective host
ServerAlias cn-ucsb-1.dataone.org
...

SSLCACertificateFile /etc/ssl/certs/DataONECAChain.crt

SSLCertificateKeyFile /etc/letsencrypt/live/cn.dataone.org/privkey.pem
SSLCertificateFile /etc/letsencrypt/live/cn.dataone.org/fullchain.pem
SSLCertificateChainFile /etc/letsencrypt/lets-encrypt-x3-cross-signed.pem

</VirtualHost>

Adjust Postgres Certificate References

Postgres is configured to use the server certificate and expects the certificate and key to be located in /var/lib/
postgresql/9.3/main/ (Note that “9.3” is the current version of postgres installed. The actual location may change
in the future).

Symbolic links may be used to refer to the actual certificate location. Replace the existing server.crt and server.
key for postgress with:

PROPERTIES="/etc/dataone/node.properties"
THIS_ENVIRONMENT=$(grep "^cn.router.hostname=" ${PROPERTIES} | cut -d'=' -f2)
CERTS="/etc/letsencrypt/live/${THIS_ENVIRONMENT}"
sudo mv /var/lib/postgresql/9.3/server.crt "/var/lib/postgresql/9.3/server.crt.$(date +%Y
→˓%m%d)"
sudo mv /var/lib/postgresql/9.3/server.key "/var/lib/postgresql/9.3/server.key.$(date +%Y
→˓%m%d)"
sudo ln -s "${CERTS}/cert.pem" /var/lib/postgresql/9.3/server.crt
sudo ln -s "${CERTS}/privkey.pem" /var/lib/postgresql/9.3/server.key

The linked files will survive a refresh of the certificates, so this only needs to be done once.

cn.server.publiccert.filename=/etc/letsencrypt/live/cn-dev-2.test.dataone.org/cert.pem cn.rsyncuser=rsync_user
environment.hosts=cn-stage-ucsb-2.test.dataone.org cn-stage-unm-2.test.dataone.org

78 Chapter 1. Contents

DataONE Operations Documentation, Release 2.0.1

Configure the DataONE Portal Application

• portal.properties

• set permissions

• restart tomcat

Certificate Renewal

LetsEncrypt certificates are relatively short lived (three months), so an automated mechanism to check and update
the certificates is needed. Since restarting services on the DataONE Coordinating Nodes requires some coordination
across the servers, this process is not yet entirely automated, though all that should be necessary is for an administrator
to execute a script to distribute the certificate and then manually restart services on each CN. Basically:

1. certbot generates a new certificate from a cron job

2. DataONE administrators are notified of the need for action

3. An administrator distributes the certificate to each CN

4. An administrator restarts services as necessary

The certificate renewal process is performed by cron using the task /etc/cron.weekly/certbot-renew listed
below:

#!/bin/bash
set -e
logger "Checking for LetsEncrypt certificate renewal"
/usr/bin/certbot renew -n --quiet \
--renew-hook "/bin/run-parts /etc/letsencrypt/renew-hook.d/"

The tasks in /etc/letsencrypt/renew-hook.d/ are executed when certificates are successfully renewed. For the
CNs, a successful renewal results in a notification being sent to administrators requesting that the next steps of the
certificate renewal are followed.

The following script will ensure the certificates have the correct permissions and synchronize the certificates to other
servers using rsync.

/etc/letsencrypt/renewal/post-cn-cert-renew.sh:

#!/bin/bash
PROPERTIES="/etc/dataone/node.properties"
RSUSER=$(grep "^cn.rsyncuser=" ${PROPERTIES} | cut -d'=' -f2)
HOSTS=$(grep "^environment.hosts=" ${PROPERTIES} | cut -d'=' -f2)
THIS_HOST=$(hostname -f)
THIS_ENVIRONMENT=$(grep "^cn.router.hostname=" ${PROPERTIES} | cut -d'=' -f2)

function synchronize_certs() {
logger "INFO: Synchronizing letsencrypt certificates to other CNs..."
#Set permissions for ssl-cert group access
echo "Setting permissions on certificates..."
chgrp -R ssl-cert /etc/letsencrypt/archive
chmod g+rx /etc/letsencrypt/archive
chgrp -R ssl-cert /etc/letsencrypt/live
chmod g+rx /etc/letsencrypt/live
#This is needed for Postgres to start:

(continues on next page)

1.3. Coordinating Nodes 79

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

chmod 0640 /etc/letsencrypt/archive/${THIS_ENVIRONMENT}/privkey*

#Synchronize with other servers
for TARGET_HOST in ${HOSTS}; do
if ["${TARGET_HOST}" != "${THIS_HOST}"]; then
echo "Syncing certificate info to ${TARGET_HOST}"
rsync -avu --rsync-path="/home/${RSUSER}/bin/rsync-wrapper.sh" \
-e "ssh -i /home/${RSUSER}/.ssh/id_rsa -l ${RSUSER}" \
/etc/letsencrypt/* \
${RSUSER}@${TARGET_HOST}:/etc/letsencrypt/

fi
done

}

echo "Using variables:"
echo "RSUSER = ${RSUSER}"
echo "HOSTS = ${HOSTS}"
echo "THIS_HOST = ${THIS_HOST}"
echo "THIS_ENVIRONMENT = ${THIS_ENVIRONMENT}"
echo
read -p "Does this look OK (y/N)?" -n 1 -r
echo
if [[$REPLY =~ ^[Yy]$]]; then
synchronize_certs
exit 0

fi
echo "Aborted."

Service Restarts

After a new certificate has been distributed it is necessary to restart apache2, postgresql, and tomcat7 to pick up
the change:

Verify apache configuration is OK
sudo apache2ctl -t
sudo service apache2 restart
sudo service postgres restart

TODO: refer to procedure for tomcat restart on CNs

Verification

Verification that the new certificate basically comes down to three checks:

1. Check service is running

• Is the service running?

sudo service apache2 status
sudo service postgres status
sudo service tomcat7 status

80 Chapter 1. Contents

DataONE Operations Documentation, Release 2.0.1

• Is a listener on the expected port?

sudo netstat -tulpn

2. Verify the new certificate is being used

The following command run from the command line will show the certificate being used by the server in its plain
text form:

TARGET="cn-ucsb-1.dataone.org:443"
echo "Q" | openssl s_client -connect ${TARGET} | openssl x509 -text -noout

3. Verify that a client can connect as expected

Use a web browser to check the server responds as expected. Use a DataONE client to interact with the server.

1.4 Development

1.4.1 Setting Hostname on Ubuntu

For server my-server.dataone.org with IP 12.34.56.78:

/etc/hostname:

my-server

/etc/hosts:

127.0.0.1 localhost
12.34.56.78 my-server.dataone.org my-server

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

Then reboot or:

sudo hostname my-server

1.4.2 Debian Packages

Debian packages are built by the continuous build system which are then used to install on Ubuntu systems such as the
DataONE Coordinating Nodes.

Packages sources are pulled from subversion, the trunk versions are located at: https://repository.dataone.org/software/
cicore/trunk/cn-buildout/

1.4. Development 81

https://repository.dataone.org/software/cicore/trunk/cn-buildout/
https://repository.dataone.org/software/cicore/trunk/cn-buildout/

DataONE Operations Documentation, Release 2.0.1

1.4.3 Continuous Build System

The continuous build system is a Jekins instance that builds and tests Java components used by DataONE.

Location: http://jenkins-1.dataone.org/jenkins/

Maven Repository

URL
https://maven.dataone.org

Artifacts are deployed to the maven repository on successful project builds.

The maven repository is indexed using the Maven::Indexer CLI

sudo /etc/cron.daily/maven-index

Backup Jenkins Configurations

HUDSON_HOME="/var/lib/jenkins/"
B_DEST="/var/lib/jenkins-backup"
rsync -r --delete --include "jobs/" --include "users/" --include "*.xml" \
--include "jobs/*/config.xml" --include "users/*/config.xml" \
--include "userContent/*" \
--exclude "jobs/*/builds" --exclude "jobs/*/last*" --exclude "jobs/*/next*" \
--exclude "*.log" --exclude "jobs/*/workspace*" --exclude "jobs/*/cobertura" \
--exclude "jobs/*/javadoc" --exclude "jobs/*/htmlreports" --exclude "jobs/*/ncover" \
--exclude "jobs/*/modules"\
--exclude "users/*/*" --exclude "/*" --exclude ".svn" --exclude "svnexternals.txt" \
${HUDSON_HOME} ${B_DEST}/backup/

rsync -r --delete \
--include="jobs/" \
--include="*.xml" \
--include="jobs/*/config.xml" \
--include="users/*/config.xml" \
--include="userContent" \
--exclude-from="excludes.txt" \
${HUDSON_HOME} ${B_DEST}/backup/

--exclude="*.java*" \
--exclude=".*" \
--exclude=".*/" \
--exclude="fingerprints/" \
--exclude="secrets/" \
--exclude="*secret*" \
--exclude="identity.*" \
--exclude="jobs/*/builds" \
--exclude="jobs/*/last*" \
--exclude="jobs/*/next*" \
--exclude="*.log" \
--exclude="jobs/*/workspace*" \
--exclude="jobs/*/cobertura" \

(continues on next page)

82 Chapter 1. Contents

http://jenkins-1.dataone.org/jenkins/
https://maven.dataone.org
http://maven.apache.org/maven-indexer/indexer-cli/index.html

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

--exclude="jobs/*/javadoc" \
--exclude="jobs/*/htmlreports" \
--exclude="jobs/*/ncover" \
--exclude="jobs/*/modules" \
--exclude="*.tar" \
--exclude=".svn" \
--exclude="svnexternals.txt" \
${HUDSON_HOME} ${B_DEST}/backup/

jobs/*/cobertura
jobs/*/javadoc
jobs/*/htmlreports
jobs/*/ncover
jobs/*/modules

1.4.4 Profiling Java Applications

There are a number of tools available for profiling Java applications.

JProfiler

The commercial JProfiler is able to remotely connect to a running instance of a JVM and provide useful statistics on
activity.

Generating Flamegraphs

Flamegraphs show the relative time spent in different operations and the hierarchy of calls needed to service an oper-
ation. Hierarchy is shown in the vertical stack. Horizontal placement has no significance as output is aplhabetically
ordered.

The async_profiler is much easier to use than honest_profiler, however it doesn’t work on the UCSB systems because
of the shared kernel virtualization there.

Insead, used honest_profiler as follows.

(note the following process was hacked together one Friday afternoon - there’s lots of improvements to the process that
can be made, but this is the basic process followed.)

The following steps were followed to generate flamegraphs for CN operations using cn-dev-ucsb-2.test.dataone.org as
the example.

Build the libagent.so c-lib (can be shared across systems using the same version of gcc)

sudo apt-get install cmake
sudo apt-get install build-essential
mkdir profiling
cd profiling
git clone https://github.com/jvm-profiling-tools/honest-profiler.git
cd honest-profiler/
export JAVA_HOME="/usr/lib/jvm/java-8-openjdk-amd64"
cmake CMakeLists.txt

(continues on next page)

1.4. Development 83

https://www.ej-technologies.com/products/jprofiler/overview.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://github.com/jvm-profiling-tools/async-profiler

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

export LC_ALL=C
make

Setup the profiler application:

cd ~/profiling
mkdir profiler
cd profiler
wget http://insightfullogic.com/honest-profiler.zip
unzip honest-profiler.zip
copy the previously built libagent.so
cp ../honest-profiler/build/liblagent.so .

Get tool to convert profiler output for flamegraph generation:

cd ~/profiling
git clone https://github.com/cykl/hprof2flamegraph.git

Setup output folder and permissions (tomcat will be run as tomcat7 user):

sudo chgrp tomcat7 ~/profiling
sudo chmod g+w ~/profiling
also enable write to a destination folder
sudo mkdir /var/www/profiling
sudo chgrp sudo /var/www/profiling
sudo chmod -R g+w /var/www/profiling

Generated flamegraphs will be at https://host.name/profiling/

Script to start tomcat7 for profiling (cn-dev-2 configuration), start_tomcat:

#!/bin/bash
PDIR=/home/vieglais/profiling
if ["$#" -ne 2]; then
echo "Must provide log name (no extension) and titles as parameters."
exit 1

fi

LOG_FILE=${PDIR}/${1}
FG_PARAMS="--width=2000 --title='${2}'"

sudo -u tomcat7 /usr/lib/jvm/java-8-openjdk-amd64/bin/java \
-agentpath:${PDIR}/profiler/liblagent.so=interval=1,logPath=${LOG_FILE}.hpl,start=0,
→˓host=127.0.0.1,port=9999 \
-Djava.util.logging.config.file=/var/lib/tomcat7/conf/logging.properties \
-Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager \
-Djava.awt.headless=true \
-XX:+PreserveFramePointer \
-Xmx8192m \
-XX:+UseParallelGC \
-Xms1024M \
-XX:MaxPermSize=512M \
-Djava.endorsed.dirs=/usr/share/tomcat7/endorsed \

(continues on next page)

84 Chapter 1. Contents

https://host.name/profiling/

DataONE Operations Documentation, Release 2.0.1

(continued from previous page)

-classpath ${PDIR}/profiler/honest-profiler.jar:/usr/share/tomcat7/bin/bootstrap.jar:/
→˓usr/share/tomcat7/bin/tomcat-juli.jar \
-Dcatalina.base=/var/lib/tomcat7 \
-Dcatalina.home=/usr/share/tomcat7 \
-Djava.io.tmpdir=/tmp/tomcat7-tomcat7-tmp \
org.apache.catalina.startup.Bootstrap start

Process log into svg
python hprof2flamegraph/stackcollapse_hpl.py ${LOG_FILE}.hpl > ${LOG_FILE}.txt
hprof2flamegraph/flamegraph.pl ${FG_PARAMS} ${LOG_FILE}.txt > ${LOG_FILE}.svg
cp ${LOG_FILE}.svg /var/www/profiling/

p_start script to start profiling data collection after service has started:

#/bin/bash
echo start | nc 127.0.0.1 9999

p_stop script to stop profiling data collection:

#/bin/bash
echo stop | nc 127.0.0.1 9999

Script to warm up tomcat a bit, start data collection, execute a call and stop data collection, e.g. test_viewservice:

#!/bin/bash

SVC_URL="https://cn-dev-ucsb-2.test.dataone.org/cn/v2/views/metacatui/"
PIDS="ajpelu.6.8 ajpelu.6.9 Akasha.16.1 Akasha.16.2 Akasha.16.3 Akasha.16.4 Akasha.16.5␣
→˓Akasha.16.6 Akasha.16.7 Akasha.16.8"
#Warm up tomcat a little
for PID in ${PIDS}; do
curl "${SVC_URL}${PID}" > /dev/null

done

./p_start
curl "${SVC_URL}doi%3A10.5063%2FF1R49NQB" > /dev/null
./p_stop

The process to generate a profile is then:

1. Open two terminals and cd into ~/profiling

2. Put the environment into read-only mode, on the primary CN:

sudo d1processingstate FALSE
sudo service d1-processing stop

3. In one terminal, shutdown the tomcat7 service and startup the script to run tomcat7 (script will ask for sudo):

sudo service tomcat7 stop
./start_tomcat view_service "cn/v2/views/metacatui"

4. Wait for tomcat to fire up. This takes about 100 seconds or so. . .

5. In the other terminal, run test_viewservice

1.4. Development 85

DataONE Operations Documentation, Release 2.0.1

6. After test_viewservice is done, shutdown tomcat7 with a ctrl-c in the first terminal.

7. View the resulting flamegraph in your web browser by visiting:

https://cn-dev-ucsb-2.test.dataone.org/profiling/view_service.svg

1.5 DataONE Environments

An “environment” in the context of these documents refers to a complete installation of the components necessary
to provide a functional DataONE federation. Each environment is completely independent of others which facilitates
testing of new software releases within an environment without impacting others.

Each environment is completely disconnected from other environments - there is no communication between systems
participating in different environments.

End users will typically only interact with the Production environment. All other environments are used for development
and testing purposes.

Table 1: Table 1. Environments used by DataONE infrastructure.
Envi-
ron-
ment

Role Description

Pro-
duction

Production The production environment operates the DataONE production infrastructure. Up-
time of this environment is of highest priority. Maintenance should be scheduled
and users must be informed via the operations and cicore email lists.

Stage Production testing The stage environments are used for testing Member Nodes, updates to Coordinat-
ing Nodes, and any other changes before deployment or participation in the pro-
duction environment. Except when testing CN components, the stage environment
should be operating the same version software as the production environment.

Stage-2 Production testing As for the stage environment.
Sand-
box

Testing The sandbox environment is used for evaluating new features and other potentially
disruptive changes. The sandbox environment may be running different (typically
newer) versions of software components compared to the stage and production en-
vironments.

Sandbox-
2

Testing As for the sandbox environment.

Dev New features The dev, or development environment is the most volatile environment and is used
for developing new features or other disruptive changes. The development environ-
ment may or may not be available at any point in time. Changes to the development
environments is coordinated within the developers via slack or email.

Dev-2 New features As for the development environment.

1.5.1 Realtime Environment Status

Realtime status of the various environments is available at: https://monitor.dataone.org/status

86 Chapter 1. Contents

https://cn-dev-ucsb-2.test.dataone.org/profiling/view_service.svg
https://monitor.dataone.org/status

DataONE Operations Documentation, Release 2.0.1

1.6 Glossary

CA certificate
A certificate that belongs to a CA and serves as the root certificate in a term:chain of trust.

CA
Certificate Authority

A certificate authority is an entity that issues digital certificate s. The digital certificate certifies the ownership of
a public key by the named subject of the certificate. This allows others (relying parties) to rely upon signatures
or assertions made by the private key that corresponds to the public key that is certified. In this model of trust
relationships, a CA is a trusted third party that is trusted by both the subject (owner) of the certificate and the
party relying upon the certificate. CAs are characteristic of many public key infrastructure (PKI) schemes.

http://en.wikipedia.org/wiki/Certificate_authority

CA signing key
The private key which the CA uses for signing CSRs.

Certificate
A public key certificate (also known as a digital certificate or identity certificate) is an electronic document which
uses a digital signature to bind a public key with an identity – information such as the name of a person or an
organization, their address, and so forth. The certificate can be used to verify that a public key belongs to an
individual.

http://en.wikipedia.org/wiki/Public_key_certificate

Chain of trust
The Chain of Trust of a Certificate Chain is an ordered list of certificates, containing an end-user subscriber
certificate and intermediate certificates (that represents the Intermediate CA), that enables the receiver to verify
that the sender and all intermediates certificates are trustworthy.

http://en.wikipedia.org/wiki/Chain_of_trust

CILogon
The CILogon project facilitates secure access to CyberInfrastructure (CI).

http://www.cilogon.org/

client
An application that accesses the DataONE infrastructure on behalf of a user.

Client Library
Part of the DataONE Investigator Toolkit (ITK). Provides programmatic access to the DataONE infrastructure
and may be used to form the basis of larger applications or to extend existing applications to utilize the services
of DataONE.

Available for Java and Python.

Java Client Library documentation

Java Client Library source

Python Client Library documentation

Python Client Library source

Client side authentication
SSL Client side authentication is part of the SSL handshake, where the client proves its identity to the web server
by providing a certificate to the server. The certificate provided by the client must be signed by a CA that is
trusted by the server. Client Side Authentication is not a required part of the handshake. The server can be set
up to not allow Client side authentication, to require it or to let it be optional.

1.6. Glossary 87

http://en.wikipedia.org/wiki/Certificate_authority
http://en.wikipedia.org/wiki/Public_key_certificate
http://en.wikipedia.org/wiki/Chain_of_trust
http://www.cilogon.org/
http://mule1.dataone.org/OperationDocs/DataONE-Java-Client-Library-HowTo.html
https://repository.dataone.org/software/cicore/trunk/d1_libclient_java
https://repository.dataone.org/software/cicore/trunk/d1_libclient_python/doc/build/html/index.html
https://repository.dataone.org/software/cicore/trunk/d1_libclient_python

DataONE Operations Documentation, Release 2.0.1

Client side certificate
Certificate that is provided by the client during client side authentication.

cn
CN
Coordinating Node

A server that implements the DataONE Coordinating Node API.

Common Library
Part of the DataONE Investigator Toolkit (ITK). Provides functionality commonly needed by projects that interact
with the DataONE infrastructure, such as serialization and deserialization of the DataONE types to and from
types native to the programming language.

It is a dependency of DataONE Client Library.

Available for Java and Python.

TODO
We need to point to releases.dataone.org for the Common Libraries. For now, see https:
//repository.dataone.org/software/cicore/trunk/

Coordinating Node API
The Application Programming Interfaces that Coordinating Nodes implement to facilite interactions with MN
and DataONE clients.

http://mule1.dataone.org/ArchitectureDocs-current/apis/CN_APIs.html

CSR
Certificate Signing Request

A message sent from an applicant to a CA in order to apply for a certificate.

http://en.wikipedia.org/wiki/Certificate_signing_request

DataONE
Data Observation Network for Earth

https://dataone.org

Data Packaging
Data, in the context of DataONE, is a discrete unit of digital content that is expected to represent information
obtained from some experiment or scientific study.

http://mule1.dataone.org/ArchitectureDocs-current/design/DataPackage.html

DN
Distinguished Name

environment
Environment

The collection of Coordinating Nodes, Member Nodes, and applications (e.g. search interface) that work together
as a federation. There is a single Production Environment and several test environments.

environment dns
Environment DNS

The DNS entry that all systems interacting with CNs in and Environment should use. During maintenance,
the Environment DNS entry will be adjusted to point to another CN in the same Environment, thus helping
to ensure ongoing availability of services while other CNs are offline. For example, the DataONE Production
Environment has three CNS, cn-ucsb-1.dataone.org, cn-unm-1.dataone.org, and cn-orc-1.dataone.
org. The Environment DNS is cn.dataone.org and points to one of the three CNs. The Environment DNS
entry has a relatively short TTL, and its associated IPAddress should not be cached for more than a few seconds.

88 Chapter 1. Contents

https://repository.dataone.org/software/cicore/trunk/
https://repository.dataone.org/software/cicore/trunk/
http://mule1.dataone.org/ArchitectureDocs-current/apis/CN_APIs.html
http://en.wikipedia.org/wiki/Certificate_signing_request
https://dataone.org
http://mule1.dataone.org/ArchitectureDocs-current/design/DataPackage.html

DataONE Operations Documentation, Release 2.0.1

GMN
DataONE Generic Member Node

GMN is a complete implementation of a MN , written in Python. It provides an implementation of all MN APIs
and can be used by organizations to expose their Science Data to DataONE if they do not wish to create their
own, native MN.

GMN can be used as a standalone MN or it can be used for exposing data that is already available on the web,
to DataONE. When used in this way, GMN provides a DataONE compatible interface to existing data and does
not store the data.

GMN can also be used as a workbone or reference for a 3rd party MN implementation. If an organization wishes
to donate storage space to DataONE, GMN can be set up as a replication target.

Identity Provider
A service that authenticates users and issues security tokens.

In the context of DataONE, an Identity Provider is a 3rd party institution where the user has an account. CILogon
acts as an intermediary between DataONE and the institution by creating X.509 certificates based on identity
assertions made by the institutions.

Investigator Toolkit (ITK)
The Investigator Toolkit provides a suite of software tools that are useful for the various audiences that DataONE
serves. The tools fall in a number of categories, which are further developed here, with examples of potential
applications that would fit into each category.

http://mule1.dataone.org/ArchitectureDocs-current/design/itk-overview.html

Java
A statically typed programming language.

http://java.com

LOA
Levels of Assurance

CILogon operates three Certification Authorities (CAs) with consistent operational and technical security con-
trols. The CAs differ only in their procedures for subscriber authentication, identity validation, and naming.
These differing procedures result in different Levels of Assurance (LOA) regarding the strength of the identity
contained in the certificate. For this reason, relying parties may decide to accept certificates from only a subset
of the CILogon CAs.

http://ca.cilogon.org/loa

Member Node API
The Application Programming Interfaces that a repository must implement in order to join DataONE as a Member
Node.

http://mule1.dataone.org/ArchitectureDocs-current/apis/MN_APIs.html

Metacat
Metacat is a repository for data and metadata (documentation about data) that helps scientists find, understand
and effectively use data sets they manage or that have been created by others. Thousands of data sets are currently
documented in a standardized way and stored in Metacat systems, providing the scientific community with a broad
range of Science Data thatâ€“because the data are well and consistently describedâ€“can be easily searched,
compared, merged, or used in other ways.

Metacat is implemented in Java.

http://knb.ecoinformatics.org/knb/docs/

1.6. Glossary 89

http://mule1.dataone.org/ArchitectureDocs-current/design/itk-overview.html
http://java.com
http://ca.cilogon.org/loa
http://mule1.dataone.org/ArchitectureDocs-current/apis/MN_APIs.html
http://knb.ecoinformatics.org/knb/docs/

DataONE Operations Documentation, Release 2.0.1

MN
Member Node

A server that implements the DataONE Member Node API.

MNCore API
A set of MN APIs that implement core functionality.

http://mule1.dataone.org/ArchitectureDocs-current/apis/MN_APIs.html#module-MNCore

MNRead API
A set of MN APIs that implement Read functionality.

http://mule1.dataone.org/ArchitectureDocs-current/apis/MN_APIs.html#module-MNRead

OAI-ORE
Open Archives Initiative’s Object Resource and Exchange

http://www.openarchives.org/ore/

OpenSSL
Toolkit implementing the SSL v2/v3 and TLS v1 protocols as well as a full-strength general purpose cryptography
library.

primary cn
Primary CN
Primary Coordinating Node

The CN on which the d1-processing daemon is running. The Primary CN must always have the Environment
DNS pointing to it.

Python
A dynamic programming language.

http://www.python.org

RDF
Resource Description Framework

The Resource Description Framework (RDF) [1] is a family of World Wide Web Consortium (W3C) specifica-
tions [2] originally designed as a metadata data model. It has come to be used as a general method for conceptual
description or modeling of information that is implemented in web resources, using a variety of syntax notations
and data serialization formats.

[1] http://www.w3.org/RDF/ [2] http://en.wikipedia.org/wiki/Resource_Description_Framework

Read Only
read-only mode

The state of an environment when updates to content throught the DataONE service interfaces is disabled. Ser-
vices including resolve, get, getSystemMetadata, getLogRecords, and search continue to function en-
abling user access to the content without disruption.

Replication target
A MN that accepts replicas (copies) of Science Data from other MNs and thereby helps ensuring that Science
Data remains available.

Resource Map
An object (file) that describes one or more aggregations of Web resources. In the context of DataONE, the web
resources are DataONE objects such as Science Data and Science Metadata.

http://www.openarchives.org/ore/1.0/toc

REST
Representational State Transfer

A style of software architecture for distributed hypermedia systems such as the World Wide Web.

90 Chapter 1. Contents

http://mule1.dataone.org/ArchitectureDocs-current/apis/MN_APIs.html#module-MNCore
http://mule1.dataone.org/ArchitectureDocs-current/apis/MN_APIs.html#module-MNRead
http://www.openarchives.org/ore/
http://www.python.org
http://www.w3.org/RDF/
http://en.wikipedia.org/wiki/Resource_Description_Framework
http://www.openarchives.org/ore/1.0/toc

DataONE Operations Documentation, Release 2.0.1

http://en.wikipedia.org/wiki/Representational_State_Transfer

SciData
Science Data

An object (file) that contains scienctific observational data.

SciMeta
Science Metadata

An object (file) that contains information about a Science Data object.

subject
In DataONE, a subject is a unique identity, represented as a string. A user or Node that wishes to act as a given
subject in the DataONE infrastructure must hold an X.509 certificate for that subject.

DataONE defines a serialization method in which a subject is derived from the DN in a X.509 certificate.

Self signed certificate
A certificate that is signed by its own creator. A self signed certificate is not a part of a chain of trust and so,
it is not possible to validate the information stored in the certificate. Because of this, self signed certificates are
useful mostly for testing in an implicitly trusted environment.

http://en.wikipedia.org/wiki/Self-signed_certificate

Server key
The private key that Apache will use for proving that it is the owner of the certificate that it provides to the client
during the SSL handshake.

Server Side Authentication
SSL Server Side Authentication is part of the SSL handshake, where the server proves its identity to the client by
providing a certificate to the client. The certificate provided by the server must be signed by a CA that is trusted
by the client. Server Side Authentication is a required part of the handshake.

Server side certificate
Certificate that is provided by the server during server side authentication.

SSL
Secure Sockets Layer

A protocol for transmitting private information via the Internet. SSL uses a cryptographic system that uses two
keys to encrypt data â^’ a public key known to everyone and a private or secret key known only to the recipient
of the message.

SSL handshake
The initial negotiation between two machines that communicate over SSL.

http://developer.connectopensource.org/display/CONNECTWIKI/SSL+Handshake

http://developer.connectopensource.org/download/attachments/34210577/Ssl_handshake_with_two_way_
authentication_with_certificates.png

SysMeta
System Metadata

An object (file) that contains system level information about a Science Data-, Science Metadata- or other
DataONE object.

Overview of System Metadata <http://mule1.dataone.org/ArchitectureDocs-
current/design/SystemMetadata.html>

Description of the System Metadata type <http://mule1.dataone.org/ArchitectureDocs-
current/apis/Types.html#Types.SystemMetadata>

Tier
A tier designates a certain level of functionality exposed by a MN .

1.6. Glossary 91

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Self-signed_certificate
http://developer.connectopensource.org/display/CONNECTWIKI/SSL+Handshake
http://developer.connectopensource.org/download/attachments/34210577/Ssl_handshake_with_two_way_authentication_with_certificates.png
http://developer.connectopensource.org/download/attachments/34210577/Ssl_handshake_with_two_way_authentication_with_certificates.png

DataONE Operations Documentation, Release 2.0.1

DataONE Member Node Tiers.

TLS
Transport Layer Security

Successor of SSL.

X.509
An ITU-T standard for a public key infrastructure (PKI) for single sign-on (SSO) and Privilege Management In-
frastructure (PMI). X.509 specifies, amongst other things, standard formats for public key certificates, certificate
revocation lists, attribute certificates, and a certification path validation algorithm.

http://en.wikipedia.org/wiki/X509

92 Chapter 1. Contents

http://en.wikipedia.org/wiki/X509

CHAPTER

TWO

INDICES AND TABLES

• genindex

See also:

• https://github.com/DataONEorg/DataONE_Operations/wiki

• https://purl.dataone.org/index.html

93

https://github.com/DataONEorg/DataONE_Operations/wiki
https://purl.dataone.org/index.html

DataONE Operations Documentation, Release 2.0.1

94 Chapter 2. Indices and Tables

INDEX

C
CA, 87
CA certificate, 87
CA signing key, 87
Certificate, 87
Certificate Authority, 87
Chain of trust, 87
CILogon, 87
client, 87
Client Library, 87
Client side authentication, 87
Client side certificate, 88
CN, 88
cn, 88
Common Library, 88
Coordinating Node, 88
Coordinating Node API, 88
CSR, 88

D
Data Packaging, 88
DataONE, 88
DN, 88

E
Environment, 88
environment, 88
Environment DNS, 88
environment dns, 88

G
GMN, 89

I
Identity Provider, 89
Investigator Toolkit (ITK), 89

J
Java, 89

L
LOA, 89

M
Member Node, 90
Member Node API, 89
Metacat, 89
MN, 90
MNCore API, 90
MNRead API, 90

O
OAI-ORE, 90
OpenSSL, 90

P
Primary CN, 90
primary cn, 90
Primary Coordinating Node, 90
Python, 90

R
RDF, 90
Read Only, 90
read-only mode, 90
Replication target, 90
Resource Map, 90
REST, 90

S
SciData, 91
Science Data, 91
Science Metadata, 91
SciMeta, 91
Self signed certificate, 91
Server key, 91
Server Side Authentication, 91
Server side certificate, 91
SSL, 91
SSL handshake, 91
subject, 91
SysMeta, 91
System Metadata, 91

95

DataONE Operations Documentation, Release 2.0.1

T
Tier, 91
TLS, 92

X
X.509, 92

96 Index

	Contents
	Project Resources
	Communications
	Real Time
	Video Conferencing
	Discussion Lists

	Documents
	Google Drive Notes

	Issue Tracking
	Member Node Issue Tracking
	Redmine.dataone.org
	Scripting Redmine
	Upgrade Notes, redmine 2.6 -> 3.2

	Metrics
	DataONE Contributors
	Listing Member Nodes
	Object Counts Over Time
	Amount of Content
	Number of Contributors
	Submission Contributors
	Authorship Contributors

	Virtual Machine Setup
	Kernel Purging
	LVM Resize

	Member Nodes Resources
	Adjusting Custom Node Properties
	Preferred Custom Properties
	CN_node_name
	CN_operational_status
	CN_date_operational
	CN_date_upcoming
	CN_date_deprecated
	CN_logo_url
	CN_info_url

	Getting and Setting Custom Properties

	Managing Display of Upcoming Nodes
	Adding a MN to the Upcoming Node List
	Registering an Upcoming Member Node

	Deployment to Production Environment
	1. Add MN Logo to GitHub
	2. Add to Upcoming
	3. Verify MN Content
	4. Prepare Announcement
	5. Obtain Client Certificate
	6. Register MN
	7. Add CN_ Properties
	8. Approve MN
	9. Content Synchronization
	10. Sync and Search Verification
	11. Announcement

	Baseline Member Node Implementation Requirements
	Introduction to SSL Certificates
	Development Contacts
	Slack
	ask.dataone.org

	Development iteration
	Implementing the Tier 1 Member Node API
	Handling identifiers
	System Metadata
	Content versioning
	Data packaging

	Development Testing
	Member Node Tester
	Testing Requirements
	Tier 1 Nodes
	Tier 2 Nodes
	Tier 3 & 4 Nodes

	Anatomy of tester failure messages
	Identifier Encoding Tests
	Authentication and Authorization Tests

	Alternate Testing Approaches

	DataONE infrastructure environments
	Appendix: Deploying the Generic Member Node
	Plan the implementation
	Choosing an implementation approach

	Member Node Approval Process
	Selection criteria
	Criteria for Standing Up a DataONE Member Node

	Member Node Deployment Checklist WORKING DRAFT
	Overview
	Planning
	Developing
	Testing
	Operating

	Member Node Deployment Checklist
	Overview
	Planning
	Developing
	Testing
	Operating

	Member Node Documentation
	Mutable Content Member Node Development
	Purpose
	Terminology
	Synopsis
	Important Concepts
	Determining Content Immutability
	Synchronization and Replication
	Update Location
	DataONE update logic

	Preferred Implementation
	Identifying versions as immutable objects
	Identifier Resolution in READ APIs
	CNRead.resolve logic
	Determining the current PID

	Entity Creation
	Renaming Entities
	Entity Updates
	Entity Archiving
	Entity Unarchiving
	Entity Deletion
	Entity Deletion for Legal Reasons

	Entity Reversion
	Cruft

	Node Registration / Update Script
	Node Registration Script
	Update Node Capabilities Script

	Operational Acceptance
	Production Registration
	Node Registration
	Register the Administrative Contact identity
	Create the Node document
	Obtain a client side certificate
	Register the MN
	DataONE evaluates the submission

	Select the DataONE Tier
	Establish Testing Environment
	Establish a test system
	Other Documents and Resources

	Coordinating Nodes
	Enter / Exit Read Only Mode
	Synopsis
	Entering read only mode
	Exiting read only mode

	Restarting Services
	d1-processing
	d1-index-task-generator
	d1-index-task-processor
	tomcat7
	solr and zookeeper
	apache
	postgres
	slapd

	System Restart
	Reindexing Content
	Approving a Member Node
	Procedure
	Sources

	Upgrade and Configuration
	Metacat Upgrade

	Certificates
	Client Certificate
	Server Certificate
	Install Certbot
	Adjust node.properties
	Create Account for rsyncuser
	Prepare for Verification
	Supporting Scripts
	Account for Synchronization
	Certificate Generation
	Adjust Apache Configuration
	Adjust Postgres Certificate References
	Configure the DataONE Portal Application
	Certificate Renewal
	Service Restarts
	Verification

	Development
	Setting Hostname on Ubuntu
	Debian Packages
	Continuous Build System
	Maven Repository
	Backup Jenkins Configurations

	Profiling Java Applications
	JProfiler
	Generating Flamegraphs

	DataONE Environments
	Realtime Environment Status

	Glossary

	Indices and Tables
	Index

